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Abstract

One of the fundamental problems in computational structural biology is the prediction of RNA
secondary structures from a single sequence. To solve this problem, mainly two different approaches
have been used over the past decades: the free energy minimization (MFE) approach which is still
considered the most popular and successful method and the competing stochastic context-free gram-
mar (SCFG) approach. While the accuracy of the MFE based algorithms is limited by the quality
of underlying thermodynamic models, the SCFG method abstracts from free energies and instead
tries to learn about the structural behavior of the molecules by training the grammars on known
real RNA structures, making it highly dependent on the availability of a rich high quality training
set. However, due to the respective problems associated with both methods, new statistics based
approaches towards RNA structure prediction have become increasingly appreciated. For instance,
over the last years, several statistical sampling methods and clustering techniques have been invented
that are based on the computation of partition functions (PFs) and base pair probabilities according
to thermodynamic models. A corresponding SCFG based statistical sampling algorithm for RNA
secondary structures has been studied just recently in [NSar]. Notably, this probabilistic method is
capable of producing accurate (prediction) results, where its worst-case time and space requirements
are equal to those of common RNA folding algorithms for single sequences.

The aim of this work is to present a comprehensive study on how enriching the underlying SCFG
by additional information on the lengths of generated substructures (i.e. by incorporating length-
dependencies into the SCFG based sampling algorithm, which is actually possible without significant
losses in performance) affects the reliability of the induced RNA model and the accuracy of sampled
secondary structures. As we will see, significant differences with respect to the overall quality of
generated sample sets and the resulting predictive accuracy are typically implied. In principle, when
considering the more specialized length-dependent SCFG model as basis for statistical sampling, a
higher accuracy of predicted foldings can be reached at the price of a lower diversity of generated
candidate structures (compared to the more general traditional SCFG variant or sampling based on
PFs that rely on free energies).

1 Introduction

The function of an RNA molecule in the cell’s processes is often to a large extend determined by its
complete 3D structure, called its tertiary structure. As most of the tertiary structure is given by the
intramolecular base pairings in the plane, it has proven convenient to first search for its 2D structure,
called the secondary structure of the molecule.
To date, the most common and still most appreciated approach for computationally predicting the RNA
secondary structure of a single sequence is based on the free energy minimization paradigm; it will be
called MFE approach in the sequel. Over the last decades, the most successful and popular method for
energy minimization has been the use of dynamic programming (DP) algorithms. While early methods,
like [NPGK78, NJ80, ZS81], computed only one (optimal) structure, the minimum free energy structure
of the molecule, several efficient algorithms have been developed over the years for generating a set of
suboptimal foldings (see, e.g., [WFHS99, Zuk89]). Some of the corresponding implementations, such as
for example the Mfold software [Zuk03] or the Vienna package [Hof03], have become widely used tools to
predict RNA structure.
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However, one major problem of MFE based DP algorithms for RNA secondary structure prediction is
that the predicted set of suboptimal foldings often contains many structures that are not significantly
different. To obtain more variation in the set of suboptimal structures, as well as to address the problem
of a statistical representation of probable foldings, a corresponding physics-based statistical sampling
algorithm has been introduced [DL03]. This algorithm can be seen as a sampling extension of the parti-
tion function (PF) approach for computing base pair probabilities as introduced in [McC90], which then
described a novel (albeit still physics-based) alternative to the common MFE approach and laid the foun-
dation for statistical characterizations of the equilibrium ensemble of RNA secondary structures. Similar
to its MFE counterpart, the algorithm for calculating the PFs and base pair probabilities is realized by
DP routines that take cubic time and require quadratic storage.

Another well-established approach towards the computational prediction of the secondary structure of
a single RNA molecule is based on stochastic context-free grammars (SCFGs). Briefly, SCFGs are an
extension to the concept of traditional context-free grammars (CFGs) in a sense that they do not only
model the class of objects (language) to be generated, but also define a (usually non-uniform) probability
distribution on its elements. Just like MFE methods, the corresponding algorithms are traditionally
realized by DP routines that run in cubic time and require quadratic storage, but in contrast to physics-
based methods, the main focus of attention is laid on the typical structural composition of foldings.
Examples for successful applications of this alternative methodology can be found, for instance, in [DE04],
where an efficient implementation is given by the popular Pfold tool [KH99, KH03].
Notably, SCFGs try to learn about the typical behavior of a particular class of RNAs from statistical
grounds. This is realized by employing appropriate training procedures for estimating probabilities for
the distinct production rules (i.e. for calculating estimates for the respective grammar parameters). In
fact, as there is no lab-based prior to the grammar parameters like the standard Turner model [MSZT99]
for MFE and PF approaches, the corresponding distribution has to be derived from a collection of real-
life RNA data (RNA sequences with annotated secondary structures) when considering such probabilistic
prediction methods. Note that in the case of SCFGs, one actually uses generative parameter training,
whereas for more complex probabilistic models, like for instance conditional log-linear model (CLLMs),
which usually have the power to represent more complex scoring schemes (e.g., a Mfold-like energy based
one as considered in [DWB06]), one needs to employ discriminative training methods.
Principally, generative (SCFG based) training can easily be realized by counting the observed frequencies
of applications of the distinct production rules of an unambiguous SCFG (yielding a maximum likelihood
estimator), by expectation maximization or similar methods from machine-learning. That way, the
resulting estimates of the grammar parameters are adapted to a particularly considered data set. As
for these data, we again have two different choices: First, we may consider a training set where only
structures of a single biological class (e.g., tRNA) are contained. Then, we may expect that all structural
properties (including aspects which are caused by interaction with proteins or by other non-energetic
details of RNA folding) that are typical to this class are trained into the respective parameter values.
For a general model of RNA folding, this has to be assumed some sort of “over-specialization”, since we
cannot expect the model to generalize well to new data from a different class. Second, we may use a rich
training set of mixed biological classes. In that case, the danger of a potential lack of generalization is
much smaller, but we lose the chance to capture some class-specific properties of the structures within
our model.
In both cases, the main problem that comes inherently with the SCFG approach for modeling RNA
structures and limits the performance of the corresponding computational prediction methods is that it
is obviously highly dependent on the availability of a rich, reliable training set in order to minimize the
danger of overfitting. In statistics, the term overfitting is used to express that a statistical model describes
random error or noise instead of the underlying relationship, caused by the fact that there are too many
parameters relative to the number of observations. Hence, in our context overfitting potentially occurs
when the number of grammar parameters to be estimated is too large for the training data, that is if the
considered RNA data are not rich enough to reliably estimate the distinct parameters. Obviously, this
might especially be the case when using an excessively complex SCFG design that distinguishes between
all different features in RNA structure aiming at a highly realistic model (for which a large number of
parameters needs to be determined).
Nevertheless, it should be mentioned that the dependence of the resulting accuracy on the used model
parameters is not only a major problem in case of probabilistic approaches, but it indeed also limits the
performance of physics-based methods. In fact, the (usually many hundreds of) thermodynamic parame-
ters used in standard state-of-the-art energy models are mostly estimated from experimental results (on
the basis of diverse structural RNAs), but folding processes of RNA molecules are usually to a large part
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controlled by a number of additional non-energetic effects. The corresponding needed information on fold-
ing kinetics, that is certain important chemical aspects (like for example the influence of proteins/enzymes
or the effect of co-transcriptional folding) can simply not be incorporated into physics-based models, since
energy parameters are actually measured in vitro. Therefore, one increasingly accepted solution to these
problems is to estimate the thermodynamic parameters from pure RNA structure databases (of one par-
ticular type of RNAs, respectively) via Bayesian statistical inference (where the experimentally derived
Turner parameter values can be used for prior specification), see for example [Din06]. Obviously, such a
Bayesian inference approach makes it possible to derive energy parameters that are suited for structure
prediction (if the original type of the input sequence is known, the corresponding estimates ought to be
used, in analogy to probabilistic methods). However, the accuracy of the estimated parameters unsur-
prisingly also strongly depends on the quality of the employed data.

Finally, note that for a long time SCFGs for RNA secondary structures have seemingly been chosen
rather arbitrarily, whereas recently a number of more sophisticated1 SCFG designs have been presented
(see, e.g., [NS11, NSW11, NSar]). Particularly, the one from [NSar] has been constructed as an exact
probabilistic counterpart to the standard energy model employed for example in the Sfold software, such
that it could adequately be used in order to directly and reliably compare probabilistic (generative),
discriminative and thermodynamic approaches. Note that aiming at more informative investigation
results, the considered SCFG has been used as basis for a probabilistic statistical sampling algorithm
that incorporates only comprehensive structural features and – instead of the recent thermodynamic
parameters (as done in Sfold) – additional information obtained from known databases of RNA structures.
In particular, the strategy studied in [NSar] relies on a probabilistic approach in order to compute sampling
probabilities corresponding to those defined in [DL03] that are used for Sfold’s stochastic traceback step.
The sampling of base pairs and unpaired base(s) basically works in the same way, that is structures are
sampled rigorously from a particular distribution of all feasible foldings for a given sequence as induced
by the appropriately trained SCFG. Notably, the probabilities needed for sampling are calculated using
only the considered grammar parameters (trained beforehand on a suitable database) and a collection of
inside and outside probabilities (computed for a given input sequence).
Just like its PF counterpart, the SCFG based method generates a sample that is guaranteed to be statis-
tically reproducible and representative, where both approaches have the same worst-case time and space
requirements. However, the SCFG method can be used with less restrictions (one can allow hairpin loops
of sizes less than three, non-canonical base pairs and bulge / interior loops of arbitrary length, due to the
departure from thermodynamic models). Moreover, when comparing the results of both sampling meth-
ods, significant differences can be observed, as shown in [NSar]. One of the potentially most interesting
ones is that the accuracy of shape predictions and the diversity within sample sets can be significantly
improved by using the SCFG method instead of the PF variant.

Note that one basic fact in connection with SCFG approaches is that at any point, the probability
for generating a particular structure motif (as modeled by the grammar) is given by the corresponding
estimated parameter value (of the corresponding production rule), which does actually not depend on the
length of the generated substructure, although in reality it often does. For example, the probability for
leaving a particular fragment unpaired instead of folding at least one additional base pair on it (resulting
for instance in a simple hairpin loop instead of a more stable paired substructure) is identical for any
fragment length, but in nature short fragments are much more likely to be left unpaired than longer ones
(as it is usually energetically more favorable to fold additional base pairs if possible).
In order to model this native behavior of RNA molecules, it seems reasonable to additionally include
length-dependencies into traditional SCFG models. To the best of our knowledge, this idea has first been
applied in [NE07] in connection with database similarity searching based on covariance models (CMs).
Briefly, CMs are profile SCFGs (a particular SCFG architecture) for cleanly describing both the secondary
structure and the primary sequence consensus of an RNA (see, e.g., [RD94]). Principally, in [NE07], it
is described how to accelerate CM searches by using a banded DP strategy (a standard approach in
many areas of sequence analysis), which actually for each node calculates the probability of generating a
subsequence of a particular length.
However, with respect to traditional probabilistic RNA secondary structure prediction methods, one
might easily consider an appropriate length-dependent stochastic context-free grammar (LSCFG), as
formally introduced in [WN11]. Basically, LSCFGs exactly address the problem sketched above, that is
they are defined as an extension to the concept of conventional SCFGs such that the probabilities of the

1By means of ability to model the diverse structural motifs by different productions with corresponding distinct param-
eters, on a par with modern thermodynamic models.
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productions depend on the length of the generated subword. One important aspect is that in general,
LSCFG based algorithms can be implemented to have the same worst-case time and space requirements
as their length-independent counterparts. Furthermore, due to the larger number of grammar parameters
implied, algorithms implementing LSCFG models are obviously not only more explicit (due to the higher
level of specialization), but unfortunately also more prone to overfitting than the corresponding traditional
SCFG variants.
Nevertheless, motivated by the idea discussed in [Mai07] of improving the SCFG approach for RNA
secondary structure prediction by explicitly considering the lengths of particular substructures, the main
objectives of this paper are given as follows: First, we want to investigate to which extend the additional
incorporation of length-dependencies into a sophisticated SCFG changes the quality of the induced prob-
abilistic RNA model. Our second aim is to quantify the differences in resulting accuracy that can be
observed when applying both probabilistic models (length-dependent and traditional one) to identical
inputs. For our examinations, we decided to rely on the elaborate SCFG design from [NSar] and analo-
gously use it as the basis for a probabilistic statistical sampling algorithm, since this effectively makes it
possible to perform comprehensive comparisons of both variants (SCFG and LSCFG based) with respect
to different meaningful applications that can immediately be considered in connection with sampling
approaches. In fact, we will present a fundamental analysis of the resulting sample sets from different
relevant perspectives in order to see if the incorporation of additional length information into SCFGs
eventually yields a quality improvement.

The plan for the rest of the paper is given as follows: Section 2 formally introduces the considered
(L)SCFG model for RNA secondary structures. The needed modifications of the original sampling algo-
rithm from [NSar] to manage the additional length-dependencies are described in Section 3. Section 4
discusses the potentials and possible drawbacks of extending the underlying sophisticated SCFG model to
a length-dependent one. Particularly, Section 4 contains important results concerning the quality of the
underlying probabilistic model with respect to both overfitting and lack of generalization. Furthermore,
it examines if adding length-dependency actually improves the accuracy of predictions obtained from sta-
tistical sampling and the overall quality of generated sample sets (with respect to the produced shapes).
For this purpose, corresponding results obtained by the length-dependent and the traditional version of
the probabilistic sampling approach are opposed to each other. Additionally, all results are compared to
corresponding ones obtained with the competing PF approach implemented in the well-established Sfold
program for further judgements. Finally, Section 5 concludes this paper.

2 Considered (L)SCFG Model

The aim of this section is to introduce the (length-dependent) SCFG model that will be used as foundation
of the (extended) probabilistic statistical sampling method studied within this article.

2.1 Underlying Traditional SCFG Model

First, note that in this work, we decided to not recall all basic definitions and concepts regarding (stochas-
tic) context-free grammars and languages. For a fundamental introduction on stochastic context-free
languages, see for example [HF71]. However, a formal definition is given as follows:

Definition 2.1 ([FH72]). A stochastic context-free grammar (SCFG) is a 5-tuple G = (I, T,R, S,Pr),
where I (respectively T ) is an alphabet (finite set) of intermediate (respectively terminal) symbols (I and
T are disjoint), S ∈ I is a distinguished intermediate symbol called axiom, R ⊂ I × (I ∪ T )∗ is a finite
set of production rules and Pr is a mapping from R to [0, 1] such that each rule f ∈ R is equipped with
a probability pf := Pr(f). The probabilities are chosen in such a way that for all A ∈ I the equality∑
f∈R pf · δQ(f),A = 1 holds. Here, δ is Kronecker’s delta and Q(f) denotes the source of the production

f , i.e. the first component A of a production rule (A,α) ∈ R. In the sequel, we will write pf : A → α
instead of f = (A,α) ∈ R, pf = Pr(f).

It is worth mentioning that if a formal language is modeled by a consistent SCFG, then the probability
distribution on the production rules of the SCFG implies a probability distribution on the words of the
generated language and thus on the modeled structures2.

2To ensure that a SCFG gets consistent, one can for example assign relative frequencies to the productions, which
are computed by counting the production rules used in the leftmost derivations of a finite training set of words from the
generated language [CG98].
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As already mentioned, in [NSar], a sophisticated SCFG mirror of the thermodynamic model applied in
the Sfold package has been constructed. This elaborate SCFG design serves as foundation for the cor-
responding SCFG based sampling method and actually differentiates between all mutually and exclusive
cases that have to be considered for the derivation of the needed sampling probabilities (by employing
distinct production rules for generating the diverse motifs). Actually, these conditional sampling prob-
abilities directly correspond to those used in [DL03] for the PF approach, expect for a slight difference
as regards bulge and interior loops such that the restriction of limiting their lengths3 can be dropped.
Formally, that sophisticated grammar models (a subset of) the formal language of all correctly bracketed
words (according to two structural parameters minHL and minhel) over the alphabet {(((, ))), ◦◦◦}, where ((( )))
and ◦◦◦ represents a base pair and unpaired base, respectively (see [VC85]). It is actually given as follows:

Definition 2.2 ([NSar]). The (unambiguous) SCFG Gs generating exactly all feasible secondary struc-
tures4 is given by Gs = (IGs ,ΣGs ,RGs , S), where IGs = {S, T, C,A, P, L, F,H,G,B,M,O,N,U, Z},
ΣGs = {(((, ))), ◦◦◦} and for mh := minHL ≥ 1 and ms := minhel ≥ 1, RGs contains exactly the follow-
ing rules:

p1 : S → T,  initiate exterior loop

p2 : T → C, p3 : T → A, p4 : T → CA, p5 : T → AT, p6 : T → CAT,  shape of exterior loop

p7 : C → ZC, p8 : C → Z,  strands in exterior loop

p9 : A→ (((msL)))ms ,  initiate helix

p10 : P → (((L))),  extend helix

p11 : L→ F, p12 : L→ P, p13 : L→ G, p14 : L→M,  initiate any loop

p15 : F → Zmh−1H,  start hairpin loop

p16 : H → ZH, p17 : H → Z,  extend hairpin loop

p18 : G→ BA, p19 : G→ AB, p20 : G→ BAB,  shape of bulge/interior loop

p21 : B → ZB, p22 : B → Z,  strands in bulge/interior loop

p23 : M → UAO,  first substructure of multiple loop

p24 : O → UAN,  second substructure of multiple loop

p25 : N → UAN, p26 : N → U,  kth substructure of multiple loop, k ≥ 3

p27 : U → ZU, p28 : U → ε,  strands in multiple loop

p29 : Z → ◦◦◦ .  unpaired base

Note that the unambiguity of such rather complex grammars can readily be proven by describing the
construction of their rule sets, as done for example in [NSW11]. Briefly, one starts with a rather simple and
small (so-called lightweight) grammar that models only the basic structure motifs and specializes it (by
replacing single productions that model one particular type of substructure by a bunch of corresponding
new productions for generating the respective special types of substructures to be considered) until all
substructures that need to be distinguished are represented by separate rules (and parameters). In
order to avoid ambiguity, we only have to take care that at any point (where a more general old rule is
replaced by a set of more specialized new ones), none of the considered alternative structure motifs can
be constructed from more than one production.
Finally, it should be mentioned that in [NSar], the parameters for the corresponding SCFG model (for
secondary structures on RNA sequences) are given by products of transition probabilities for the produc-
tions in RGs and emission probabilities for the four possible choices of unpaired bases (here represented
by ◦◦◦ ) and for the 16 different base pairs (that are represented by ((( )))). Note that this separation into
rule and emission probabilities eventually allows us to only consider the productions of the unambiguous
grammar Gs modeling the class of all feasible secondary structures, although we actually had to deal with
the larger set of productions of a corresponding ambiguous grammar Gr generating any possible RNA
sequence (where the derivation trees uniquely correspond to the different secondary structures for that

3When applying the PF approach, one has to choose a constant value for the parameter maxBL which defines the max-
imum allowed size of single-stranded regions in bulge and interior loops, as this ensures a cubic worst-case time complexity.
For applications, maxBL = 30 is a common choice.

4Feasible structures contain neither hairpin loops consisting of less than minHL unpaired nucleotides nor helices formed
by less than minhel consecutive base pairs. In literature, commonly used choices for these parameters are given by minHL ∈
{1, 3} and minhel ∈ {1, 2}.
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sequence). Notably, if all emissions (for unpaired bases and base pairs, respectively) come from the same
distribution (i.e., for any considered loop type, one uses the same emission probabilities for unpaired bases
located within and base pairs closing a corresponding loop), this separation usually reduces the number
of free parameters that need to be estimated by corresponding training procedures in a very significant
way. Hence, under that assumption (which by the way has become custom in connection with RNA
modeling in order to minimize the danger of overfitting), the number of free parameters that have to be
trained in our case is limited by card(RGs)− card(IGs) + card(ΣGr ) + card(ΣGr )

2 = 29−15 + 4 + 16 = 34.

2.2 Incorporation of Length-Dependencies

As already indicated in Section 1, in an attempt to improve the ability of the underlying stochastic
model to capture typical structural features of a particular RNA family within its parameters, we want
to additionally incorporate length-dependencies according to the following definition:

Definition 2.3 ([WN11]). A length-dependent stochastic context-free grammar (LSCFG) is defined as a
SCFG G = (I, T,R, S,Pr) with the following exceptions:

• Pr : R× N→ [0, 1] now takes a second argument (length of subword generated).

• The constraint on the probabilities changes to:
∀A ∈ I ∀n ∈ N :

∑
A→α∈R Pr(A→ α, n) ∈ {0, 1}.

• Additionally, we introduce a probability distribution Pr(n) on the lengths of the words in L(G), i.e.∑
n∈N : Tn∩L(G)6=∅ Pr(n) = 1 .

• Let len(A → α) denote the length of a specific rule application A → α in a parse tree, which is
defined as the length of the (terminal) subword finally generated from A → α. Furthermore, for
α ∈ (I ∪ T )∗ and n ∈ N, we denote by cα,n the number of different assignments of lengths to the
symbols of α that satisfy:

– Terminals are always assigned a length of 1.

– A nonterminal B can be assigned any length l for which there is w ∈ T l such that Pr(B ⇒
w) > 0.

– The assigned lengths add up to n.

The probability of a parse tree for a word of length n is then Pr(n) times the product of the
probabilities of all rule applications A→ α in the tree multiplied by 1/cα,len(A→α).

Note that the factors 1/cα,len(A→α) and Pr(n) are necessary to ensure a probability distribution on the
language that is generated by the LSCFG (see [WN11] for details). In fact, considering a conventional
SCFG, the probability of a parse tree δ is given by∏

A→α applied in δ
Pr(A→ α),

whereas for the corresponding LSCFG, the probability of a parse tree δ for a terminal word w ∈ Tn is
defined by

Pr(n) ·
∏

A→α applied in δ
Pr(A→ α, len(A→ α)) · 1/cα,len(A→α).

As proposed in [WN11], we will confine ourselves with grouping the lengths together in several intervals
which allows us to store the needed transition probabilities as a vector and thus makes it possible to
retrieve them in algorithms and applications without further computational efforts. Obviously, the needed
emission probabilities for unpaired bases and base pairs, respectively, can be stored and retrieved in the
same way. As we will see later, when choosing appropriate intervals, this restriction is – under certain
circumstances – still powerful enough to yield a significant improvement over traditional SCFGs with
respect to the prediction accuracy of statistical sampling and the quality of the generated sample sets.
However, if lengths are to be grouped into intervals, we have to deal with the fact that not all such group-
ings yield a consistent grammar. Nevertheless, the following definition of consistency offers a sufficient
condition that they do (see [WN11] for details).

Definition 2.4 ([WN11]). Let G = (I, T,R, S) a CFG and Q a partitioning of N. We call Q consistent
with G if it satisfies ∀q ∈ Q, i, j ∈ q : ∃A→ α ∈ R, wi ∈ T i : α⇒∗ wi y ∃wj ∈ T j : α⇒∗ wj .
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This means to satisfy that condition, we may not group lengths together for which different subsets of
the considered rule set can eventually yield a terminal word of the respective length; the partitioning into
sets of one element each (which corresponds to not grouping lengths into intervals) is trivially always
consistent.
It should be clear that the danger of overfitting of the induced model is much more present if length-
dependent probabilities rather than their traditional length-independent counterparts are considered,
since then the observations made for a particular structural motif have to be splitted into distinct subsets
of observations according to the corresponding lengths (or length intervals). In fact, LSCFGs typically
imply significantly greater numbers of free parameters than the corresponding conventional SCFGs, where
the actual numbers indeed increase with growing complexity (by means of number of distinguished length
intervals) of the considered partitioning of N.

2.3 Finding Appropriate Length Intervals

In order to find appropriate length intervals for applications based on grammar Gs, we first partition the
productions in RGs into subsets, where each subset generates terminal words of different lengths. Let
mp := (2 ·ms +mh) denote the minimum allowed size of a paired substructure. Furthermore, recall that
in this paper, we will only consider the common choices ofmh = minHL ∈ {1, 3} andms = minhel ∈ {1, 2}.
Then, we obtain the following:

Lengths Rules that can actually produce a terminal word of these lengths
= 0 p28 : U → ε,
≥ 0 p26 : N → U ,
= 1 p8 : C → Z, p17 : H → Z, p22 : B → Z,

p29 : Z → ◦◦◦ ,
≥ 1 p1 : S → T , p2 : T → C, p27 : U → ZU ,
≥ 2 p7 : C → ZC, p16 : H → ZH, p21 : B → ZB,
≥ mh ∈ [1; 3] p11 : L→ F , p15 : F → Zmh−1H,
≥ mh + 2 ∈ [3; 5] p10 : P → (((L))), p12 : L→ P ,
≥ mp ∈ [3; 7] p3 : T → A, p9 : A→ (((msL)))ms ,

p24 : O → UAN , p25 : N → UAN ,
≥ mp + 1 ∈ [4; 8] p4 : T → CA, p5 : T → AT ,

p13 : L→ G, p18 : G→ BA, p19 : G→ AB,
≥ mp + 2 ∈ [5; 9] p6 : T → CAT , p20 : G→ BAB,
≥ 2 ·mp ∈ [6; 14] p14 : L→M , p23 : M → UAO.

Consequently, a partitioning Q of N that is consistent with Gs (according to Definition 2.4) can be given
as follows:

Q ={[0; 0], [1; 1], [2; max(2,mh − 1)]}∪
{[mh;mh], [mh + 1;mh + 1], [mh + 2; max(mh + 2,mp − 1)]}∪
{[mp;mp], [mp + 1;mp + 1], [mp + 2; 2 ·mp − 1], [2 ·mp;∞]}.

However, for the sake of simplicity, it would be more convenient to consider only a grouping of lengths
into intervals that is appropriate for all our different structural parameter choices. In order to keep the
estimated probabilities accurate, we decided to make the intervals longer as the considered subwords get
longer, for the following two reasons: First, since typically any training set contains fewer data points per
length as the length gets longer and second, since the influence a change in length has on the probabilities
of productions most likely depends on the relative change rather than the absolute one. Therefore, we
decided to use the successively increasing intervals [i; i] for 0 ≤ i ≤ 40, [i; i+1] for 41 ≤ i ≤ 59, [i; i+2] for
61 ≤ i ≤ 82, [i; i+ 3] for 85 ≤ i ≤ 97, [i; i+ 4] for 101 ≤ i ≤ 136, [i; i+ 9] for 141 ≤ i ≤ 191 and [i; i+ 19]
for 201 ≤ i ≤ 281, together with the longer intervals [301; 330], [331; 360], [361; 390], [391; 430], [431; 470],
[471; 510], [511; 560], [561; 610], [611; 670], [671; 730], [731; 800], [801; 900], [901; 1000], and [1001;∞]5.
Obviously, this partitioning of N (into 105 distinct length intervals) is consistent with Gs for all considered
structural parameter choices and thus in any case yields a consistent LSCFG Gs.
Finally, note that under the common assumption that all emissions come from the same distribution, there
are accordingly at most (card(RGs)− card(IGs)) ·105+card(ΣGr ) ·1+card(ΣGr )

2 ·105 = (29− 15) ·105+
4 + 16 · 105 = 1470 + 4 + 1680 = 3154 free parameters that need to be estimated for the LSCFG Gs when

5Note that these are basically the same intervals as used in [WN11] for the length-dependent grammars and have thus
proven convenient.
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considering these 105 appropriate length intervals. This number is obviously indeed to a large extend
greater than the corresponding parameter number (of at most 34) implied in case of the conventional
SCFG Gs. However, it should be mentioned that the actual number of relevant (i.e., being greater than
0) free parameters will usually be much smaller, since a potentially significant amount of the length-
dependent probabilities will inevitably always be equal to zero (independent on the used training data).
This is due to the partitioning of data points according to different lengths and the constraints imposed
by the structural parameters minhel and minHL. For instance, as regards multiloops, we might only
obtain Pr(L→M, l) 6= 0 for l ≥ 2 ·mp, whereas for l < 2 ·mp, Pr(L→M, l) = 0 must always hold.

3 Algorithm

In this section, we will describe how to modify the routines and formal definitions proposed in [NSar]
in order to obtain a corresponding statistical sampling method for RNA secondary structures according
to the length-dependent SCFG model defined in the last section. Therefore, recall that in accordance
with the popular PF variant presented in [DL03], the SCFG based sampling method has two basic
steps. Its first step (preprocessing) computes the inside and outside probabilities for all substrings of
an RNA sequence based on the considered SCFG. In the second step (structure sampling), base pairs
(and unpaired bases) are randomly drawn according to the conditional sampling probabilities for the
considered fragment (that are calculated by using only the inside and outside values derived in step one
and the probabilities of the grammar rules) in order to sample complete secondary structures.

3.1 Computation of Inside and Outside Probabilities

In [NSar], all inside and outside probabilities have been computed based on an Earley-style parser6.
Notably, if grammar parameters are separated into transitions and emissions, then probabilistic Earley
parsing can easily be applied to work for all SCFGs (length-dependent or not) by a few simple modifica-
tions of the corresponding subroutines. Basically, instead of considering both the transition and emission
probabilities already in the initial prediction steps, one has to multiply in the right rule probabilities (mul-
tiplied by corresponding factors) in the completion steps and the corresponding emission probabilities in
the scanner steps, respectively. Under the assumption that the lengths are grouped together in several
intervals, these modifications do not influence the run-time significantly (we only need an additional
parameter for probability lookup).
A formal and more detailed description on how the inside and outside variables for a given input sequence
can be computed with a special variant of an Earley-style parser based on the (L)SCFG Gs can be found
in Section Sm-I7.

3.2 Computation of Sampling Probabilities and Structure Sampling

Furthermore, note that the equations defining the needed sampling probabilities for all considered cases
as presented in [NSar] depend not only on inside and outside values for the given RNA sequence, but also
on probabilities Pr(rule) of production rules rule ∈ RGs of the underlying SCFG. Thus, in order to obtain
the respective sampling probabilities based on the corresponding LSCFG model, besides computing the
inside and outside probabilities in a slightly different way as described previously, we additionally have
to consider length-dependent rule probabilities (multiplied by corresponding factors) instead of their
traditional length-independent counterparts in the respective definitions.
The corresponding sampling algorithm and the use of the diverse sampling probabilities (derived length-
dependently or conventionally) remain the same as proposed in [NSar]. Thus, all in one, by using the
LSCFG approach instead of the corresponding length-independent variant, we can produce a statistical
sample of the complete ensemble of all possible structures for a given sequence without significant losses
in performance. However, when comparing the results of both SCFG methods, significant differences can
be observed, as we will see in the next section.

6The authors actually relied on the formalism presented in [Goo98, Goo99] for describing parsers which is called semiring
parsing for the inside outside calculations, as this approach also works for SCFGs like Gs that are not in Chomsky normal
form (CNF).

7All references starting with Sm are references to the supplementary material to this paper, available at
http:///wwwagak.cs.uni-kl.de/publications/.
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4 Applications and Discussion

The purpose of this section is to explore the benefits and potential drawbacks of enriching the sophisticated
SCFG design introduced in [NSar] with additional information on the lengths of generated subwords
(corresponding to particular RNA substructures).
In principle, the main question is to what extend are the sampling quality and the predictive power of the
corresponding sampling variants affected by relying on the more elaborate LSCFG model (with a resulting
comparatively huge number of more specific parameters) instead of on the conventional SCFG model (that
implies only a rather moderate parameter number). It would also be interesting to see how much the
performances of the traditional and the length-dependent SCFG variant (with the more generalized and
specialized transition and emission probabilities, respectively) differ from that of the popular PF approach
(that employs many hundreds of mostly experimentally obtained thermodynamic parameters). Therefore,
we decided to consider a number of meaningful applications in connection with sampling approaches to
the generated samples and for any of those applications oppose the results obtained with the proposed
LSCFG based sampling approach to corresponding outputs of the simple SCFG variant from [NSar] and
the PF method as described in [DL03]8.

4.1 Considered RNA Data and Probabilistic Parameters

In order to obtain an adequate basis for the investigations that will be performed within this section, we
took the same sets of real world RNA data as were used for the corresponding applications in [NSar]: First,
a (very rich) tRNA database (of 2163 distinct structures with lengths in [64, 93]) obtained from [SHB+98].
Second, a (not quite so rich) 5S rRNA database (of 1149 distinct sequences with lengths in [102, 135])
retrieved from [SBEB02]. And last but not least, a (rather sparse) mixed structural database (of 151
distinct RNA molecules with lengths in [23, 568]) as collected in [DWB06]. Note that the latter will
be denoted by S-151Rfam database in the sequel and is ought to illustrate quality differences of the
corresponding results compared to the rich (and pure) tRNA and 5S rRNA data sets.

Training data Model Structural Constraints numtr numunp
em numbp

em

tRNA SCFG minHL ∈ {1, 3},minhel = 1 28 4 15
minHL ∈ {1, 3},minhel = 2 27 4 14

LSCFG minHL = 1,minhel = 1 334 4 162
minHL = 1,minhel = 2 281 4 155
minHL = 3,minhel = 1 332 4 162
minHL = 3,minhel = 2 279 4 155

5S rRNA SCFG minHL ∈ {1, 3},minhel ∈ {1, 2} 28 4 16
LSCFG minHL = 1,minhel = 1 392 4 572

minHL = 1,minhel = 2 357 4 565
minHL = 3,minhel = 1 390 4 572
minHL = 3,minhel = 2 355 4 565

S-151Rfam SCFG minHL ∈ {1, 3},minhel ∈ {1, 2} 29 4 6
LSCFG minHL = 1,minhel = 1 1171 4 477

minHL = 1,minhel = 2 1055 4 446
minHL = 3,minhel = 1 1155 4 470
minHL = 3,minhel = 2 1022 4 434

Table 1: Numbers of relevant parameters (transition and emission probabilities being greater than zero)
that are obtained from training the respective database (in the traditional or length-dependent way).
Here, numtr denotes the number of relevant transition probabilities. Accordingly, numunp

em and numbp
em

denote the numbers of relevant emission probabilities of unpaired bases and base pairs, respectively.

As already mentioned, we implemented length-dependency by grouping the lengths into distinct intervals,
such that the probabilities change only from one interval to the other but not within them. In fact, we used
the 105 reasonable intervals9 presented at the end of Section 2. Table 1 shows that quite different numbers

8It should be mentioned that for our examinations, we have implemented our own version of Sfold’s sampling procedure.
For this implementation, we decided to use the thermodynamic parameters from Mathews et al. [MSZT99], which were also
used for version 3.0 of the Mfold software [Zuk03]

9Note that since the interval lengths grow with increasing subword length, we can hope for accurate estimated proba-
bilities. Furthermore, as all molecules in the considered benchmark sets are shorter than 1000 nucleotides, the probabilities
of the last interval do not influence our results.
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Figure 1: Loop profiles for E.coli tRNAAla, obtained with the PF approach and the length-dependent
SCFG variant. Hplot and Mplot display the probability that an unpaired base lies in a hairpin and
multibranched loop, respectively. Results for the PF approach (for maxBL = 30) are displayed by the
thin black lines. For the SCFG approach, we chose minhel = 1 (thick gray lines) and minhel = 2 (thick
dashed darker gray lines), combined with minHL = 3, respectively. The corresponding probabilities for
the correct structure of E.coli tRNAAla are also displayed (by black points).

of relevant length-dependent (rule and emission) probabilities result when training our grammar on the
three different data sets, respectively. However, although the numbers of relevant grammar parameters are
unsurprisingly to a large extend greater when considering the LSCFG model rather than the traditional
length-independent variant, they are indeed of a considerably smaller (in case of tRNAs and 5S rRNAs) or
at least only of a similar (in case of the S-151Rfam data) order of magnitude than the numbers of energy
parameters employed in standard thermodynamic models. Hence, if statistical parameter learning makes
sense in connection with free energy approaches (which it obviously does, since it has become increasingly
appreciated), then it should also yield reasonable results in case of LSCFG based probabilistic methods.
Motivated by this assumption, we decided to start our examinations in the next section by considering
one of the most intuitive applications in connection with statistical sampling methods that is of great
practical interest.

4.2 Probability Profiling for Specific Loop Types

As starting point for our examinations, a statistical sample of all possible secondary structures for a
given RNA sequence shall be used for sampling estimates of the probabilities of any structural motifs.
In particular, we will consider probability profiles of unpaired bases in each specific loop type of RNA
secondary structure. This means for each nucleotide position i, 1 ≤ i ≤ n, of a given RNA sequence
of length n, we compute the probabilities that i is an unpaired base within a specific loop type; these
probabilities are given by the observed frequency in a sample set of secondary structures for the given
sequence.
To compare the sampling results obtained with the presented LSCFG approach to those for the PF
variant, we decided to consider the corresponding probability profiles for Escherichia coli tRNAAla,
which are shown in Figure 3 of Section Sm-II. The probably most interesting ones are also displayed in
Figure 1 which perfectly exhibit the cloverleaf structure of tRNAs, enhancing the corresponding profiles
for the length-independent SCFG variant (these are presented in Figure 2 and Figure 4 of Section Sm-II
for convenience).
It is obvious that the statistical samples generated by the (L)SCFG approach are significantly more
accurate than those obtained with the PFs. Furthermore, comparing the plots in Figure 1 to those in
Figure 2 that were computed without considering length-dependency, we see that the sampling results can
indeed be improved by incorporating additional length information into the underlying SCFG model; the
correct cloverleaf structure of the considered tRNA is almost exactly reached in all sampled structures.
Nevertheless, before we proceed with applications of the considered sampling approaches to RNA structure
prediction, we first want to discuss some important results with respect to the quality of particular
probabilistic structure models (induced by the three considered RNA classes, respectively) underlying
the proposed LSCFG based sampling method.
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Figure 2: Loop profiles for E.coli tRNAAla corresponding to those presented in Figure 1, obtained with
the PF approach and the traditional SCFG variant that does not incorporate length-dependencies.

4.3 The Problem of Overfitting and the Lack of Generalization

Analogous to [NSar], we will address two possible issues of our sophisticated LSCFG in connection with
this study: the problem of overfitting and the lack of generalization. With respect to the latter, it seems
important to mention that the profiling results for Escherichia coli tRNAAla eventually validate two
obvious assumptions: First, if our LSCFG is trained on trusted tRNAs only, it should inevitably produce
the typical tRNA cloverleaf shape more often than the alternative PF variant that is not suited to a
specific class of RNA structures. Second, as the additional consideration of length-dependencies yields
more specialized probabilities for the distinct structural motifs and tRNA molecules naturally show a
low structural variety, the LSCFG based profiles should inherently show the cloverleaf structure more
explicitly.
Consequently, it is likely that the higher accuracy reached by the LSCFG model could be an artefact
caused by lack of generalization of the underlying stochastic structure model. To get evidence of the
correctness of this assumption, we took the random sequence sets from [NSar]10 and applied the different
sampling approaches. The results are collected in Table 2.
Undoubtably, the presented statistics demonstrate that the LSCFG variant mainly samples cloverleaf
structures, even if the signal towards cloverleaf is low or does actually not exist (minhel = 0 means
completely random sequences, that is no signal). This yields the assumption that incorporating length-
dependencies into the underlying sophisticated SCFG model in fact causes lack of generalization, as the
cloverleaf shape is always preferred over others, regardless of the signal induced by the actual sequence
composition. Hence, there is some reason to believe that the accuracy gain of the LSCFG sampling ap-
proach (at least for tRNA profiling) is due to the high degree of specialization of the underlying stochastic
structure model (very explicitly tailored to a certain shape), which bares an undesirable lack of gener-
alization (to possible but usually less likely other shapes). Since we most likely observe such effects in
connection with tRNA and its invariant cloverleaf shape, we skipped similar investigations for the other
cases.

Nevertheless, in order to investigate if overfitting may be a problem for the subsequent examinations,
i.e. to see if our different data sets are rich enough to reliably derive the parameters of our grammar
even in the length-dependent case, we performed the following experiments (similar to [NSar]): For each
of the three considered structural RNA databases, we selected a random 90% portion of the original
database (such that the resulting sample size equals that of training sets used for 10-fold cross-validation
experiments which will be intensively performed in the sequel) and re-estimated the probabilities of all
grammar rules (for any of the previously chosen length intervals, respectively). Since the number of
feasible structures that can be considered for training is reduced by prohibiting small hairpin loops and
isolated base pairs, we decided to rely on the most realistic restrictions of minhel = 2 and minHL = 3 for
our SCFG Gs in order to obtain the potentially most meaningful results.
The corresponding re-estimation process was iterated 100 times for any database, resulting in a sample
of 100 parameter sets, respectively, each of them consisting of exactly card(RGs) sets of length-dependent

10For any fixed value of minhel, the corresponding set has been generated by randomly creating secondary structures
(with corresponding sequences) having the cloverleaf shape, where all four helices (the stem and the three adjacent helices
of the multiloop) are formed by exactly minhel consecutive (canonical) base pairs.
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Approach minhel numd cd cMF cCL numMF

PF 0 36 8333.33 94085 3331 6
1 34 8823.53 87785 5338 6
2 35 8571.43 96083 2745 6
3 37 8108.11 95332 4492 6
4 30 10000. 107881 9967 6
5 29 10344.8 111716 20875 3
6 33 9090.91 102788 49733 2
7 27 11111.1 94859 94859 0

SCFG 0 858 349.65 26341 14114 5
1 916 327.511 22643 15596 4
2 915 327.869 21258 13912 4
3 895 335.196 20175 16207 2
4 914 328.228 19828 17784 2
5 844 355.45 20560 20560 0
6 747 401.606 34753 34753 0
7 658 455.927 59644 59644 0

LSCFG 0 28 10714.3 92727 92727 0
1 28 10714.3 91276 91276 0
2 25 12000. 88660 88660 0
3 27 11111.1 94323 94323 0
4 27 11111.1 94536 94536 0
5 27 11111.1 100720 100720 0
6 27 11111.1 107157 107157 0
7 26 11538.5 115788 115788 0

Table 2: Results derived from random data sets, where minhel (defining the minimum allowed length
of helical regions) has been used as structural constraint for the generation of random sequences with
corresponding (more or less strong) signals towards a cloverleaf structure. numd denotes the number
of distinct shapes (here, abstract shapes of level 5 according to [JRG08]) in all samples and cd the
average count of one of these distinct shapes. Furthermore, cMF and cCL represent the count of the most
frequent and cloverleaf shape in all samples, whereas numMF denotes the number of distinct shapes that
are observed more frequently than the cloverleaf. For any setting of minhel, all tabulated values were
computed from a corresponding random data set of cardinality 300 (containing 10 random sequences for
any length n ∈ {64, . . . , 93} according to the length range observed from our tRNA database), respectively.
A sample size of 1000 structures and maxBL = 30 has been chosen for either approach.

probabilities pi(I) for the distinct length intervals I rather than of one single (conventional, i.e. length-
independent) probability value pi, 1 ≤ i ≤ card(RGs). Therefore, for each of the distinguished length-
dependent grammar parameters pi(I), we determined its variance along the constructed sample of size
100 and subsequently computed the maximum variance (observed for a particular length interval I)
among all variances V[pi(I)] implied by production rule fi, for 1 ≤ i ≤ card(RGs). Formally, for each
set of length-dependent probabilities corresponding to grammar parameter pi, 1 ≤ i ≤ card(RGs), we
calculated maxI V[pi(I)]. The resulting values are collected in Table 3.
Note that the variances 0 in most cases result for production rules finishing the generation of unpaired
regions (for example p8 : C → Z or p28 : U → ε), since those can only produce words of one particular
length (1 or 0), whereas longer words (unpaired regions) are generated by the corresponding alternative
productions with same left-hand side (for example p7 : C → ZC or p27 : U → ZU), and the weights
on the production rules must indeed sum up to unity for any considered length interval. Thus, since
we use unary intervals for lengths 0 and 1, respectively, for any production ending a run of unpaired
bases, a probability of 1 is predetermined, yielding variance 0. For basically the same reason, there
must result a variance of 0 for production p29 : Z → ◦◦◦ , i.e. this observation is due to the fact that this
rule unexceptionally generates words of length 1 (an arbitrary unpaired base) and there exist no other
alternatives for the corresponding premise implying words of that particular length.
However, all the other (maximum) variances presented in Table 3 (at least for tRNAs and 5S rRNAs) are
rather small, too. Therefore, we may assume that overfitting is not really an issue in connection with our
sophisticated SCFG and the training sets used (at least for the rich tRNA and 5S rRNA data), even in
the case of length-dependent parameter estimation procedures. It remains to mention that the tabulated
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maxI V[·(I)] tRNA 5S rRNA S-151Rfam
p1 1.1372× 10−4 4.6414× 10−5 2.1343× 10−2

p2 7.1533× 10−5 7.0953× 10−5 4.8821× 10−3

p3 7.0888× 10−7 2.4405× 10−5 1.8768× 10−3

p4 2.0229× 10−7 7.7689× 10−6 1.0272× 10−3

p5 3.5269× 10−5 2.5606× 10−5 2.4133× 10−3

p6 4.9101× 10−6 6.4274× 10−6 4.9589× 10−3

p7 1.1616× 10−5 3.0681× 10−5 1.7759× 10−4

p8 0 0 0
p9 4.9153× 10−6 3.5895× 10−5 6.0461× 10−3

p10 5.5523× 10−6 1.5978× 10−5 2.9525× 10−3

p11 2.6480× 10−6 5.7427× 10−6 8.8191× 10−4

p12 6.1203× 10−6 1.5467× 10−5 1.7275× 10−3

p13 1.6234× 10−7 6.3548× 10−6 3.1334× 10−4

p14 2.9152× 10−6 3.2344× 10−6 6.5392× 10−5

p15 3.1928× 10−6 1.0465× 10−4 2.0547× 10−3

p16 1.9113× 10−6 6.4819× 10−6 1.1604× 10−4

p17 0 0 0
p18 0 1.0346× 10−4 1.6601× 10−3

p19 0 8.9041× 10−5 2.0498× 10−3

p20 1.8388× 10−3 1.1285× 10−4 9.3347× 10−3

p21 4.1771× 10−5 6.9182× 10−7 7.3819× 10−5

p22 0 0 0
p23 9.5068× 10−5 4.1479× 10−5 3.6034× 10−2

p24 5.1666× 10−5 6.1313× 10−4 5.1346× 10−2

p25 1.6458× 10−5 0 1.7848× 10−3

p26 1.2797× 10−6 1.7441× 10−4 1.6096× 10−2

p27 8.0792× 10−7 4.0028× 10−6 6.0669× 10−4

p28 0 0 0
p29 0 0 0

Table 3: Truncated maximum variances of any set of grammar parameters (transition probabilities)
for different length intervals, derived from 100 iterations of (length-dependently) training our SCFG Gs
on random subsets containing 90 percent of the original data, respectively, under the assumption of
minHL = 3 and minhel = 2.

(maximum) variances derived for the considered length-dependent grammar parameters are in most cases
indeed larger than the corresponding variances for the conventional parameters which do not depend on
the lengths of generated subwords (as can be observed by comparing Table 3 to Table 13 of Section Sm-II).
This to some extend proves the fact that length-dependent training procedures generally require richer
training sets in order to estimate the grammar parameters (for any considered length interval) as reliably
as in the traditional length-independent case.

4.4 Prediction Accuracy – Sensitivity and PPV

In order to investigate how the quality of predictions changes when using the (length-dependent) SCFG
approach for computing the sampling probabilities, we decided to consider the common accuracy measures
sensitivity and positive predictive value11. In the context of RNA secondary structure prediction, they
are usually defined as follows (see e.g. [BBC+00]):

• sensitivity (Sens.) is the relative frequency of correctly predicted pairs among all position pairs that
are actually paired in a stem of native foldings, whereas

• the positive predictive value (PPV) is defined as the relative frequency of correctly predicted pairs
among all position pairs that were predicted to be paired with each other.

Formally, these measures are given by Sens. = TP · (TP +FN)−1 and PPV = TP · (TP +FP )−1, where
TP is the number of correctly predicted base pairs (true positives), FN is the number of base pairs in the
native structure that were not predicted (false negatives) and FP is the number of incorrectly predicted
base pairs (false positives).

For assessing the differences in the predictive accuracy of sample sets generated according to either
approach, we decided to perform a suitable k-fold cross-validation for any of our three different RNA
databases. Actually, we used the same partitions of the comprehensive tRNA and 5S rRNA databases into

11Note that the positive predictive value is often called specificity, although this measure formally obeys to a slightly
different definition
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k = 10 and of the mixed S-151Rfam database into k = 2 approximately equal-sized folds as in [NSar] and
derived the corresponding k-fold cross-validations results, respectively. In particular, for any sequence, we
sampled a set of 1000 structures and then applied different principles to obtain a corresponding structure
prediction:
First, we assumed that the prediction for a given sequence is equal to the most frequently sampled
secondary structure, which will be called most frequent (MF) structure in the sequel. This is convenient,
since the sampling algorithm produces a statistically representative sample of secondary structures for a
given RNA sequence, and thus, if the sample size is large enough, the most frequently sampled structure
can be assumed to be highly probable among all structures for this sequence. For this reason, given the
case that there is more than one most frequently sampled structure, we always chose one with the highest
probability (according to the probability distribution implied by the respective approach).
As an alternative, we decided to additionally consider a maximum expected accuracy (MEA) structure of
the generated sample set as prediction. Basically, the MEA structures for a given sequence are the ones
among all candidate structures that maximize the number of correctly unpaired and paired positions
with respect to the true folding of that sequence. However, contrary to this traditional definition (as
employed in common DP approaches for predicting a single folding, like for instance Pfold [KH03] and
CONTRAfold [DWB06]), we rely on the slightly modified version as proposed in [NSar], where the base
pairing probabilities pi,j reflect the distribution observed in the sample set and not the distribution
implied by the complete structure ensemble for the given input sequence.
Finally, we took the unique centroid structure of the generated sample set as predicted folding. Briefly,
a centroid is defined as the single structure in the entire ensemble that has the minimum total base-pair
distance to all other structures and thus best represents the central tendency of the structure set. This
choice can thus be seen as purposive for sampling approaches like the ones opposed in this study, as the
centroid reflects the overall behavior of the structures in a given sample set.

MF struct. MEA struct. Centroid
Approach Parameters

Sens. PPV Sens. PPV Sens. PPV

PF maxBL = 30 0.6565 0.5890 0.6434 0.6035 0.6159 0.6344
SCFG minHL = 1,minhel = 1 0.7791 0.8445 0.7324 0.8939 0.6754 0.9158

minHL = 1,minhel = 2 0.8004 0.8457 0.7685 0.8878 0.7113 0.9123
minHL = 3,minhel = 1 0.8545 0.8517 0.7848 0.9021 0.7304 0.9213
minHL = 3,minhel = 2 0.8677 0.8593 0.8182 0.8953 0.7713 0.9168

LSCFG minHL = 1,minhel = 1 0.8542 0.9535 0.8335 0.9736 0.8250 0.9783
minHL = 1,minhel = 2 0.8530 0.9502 0.8518 0.9613 0.8435 0.9657
minHL = 3,minhel = 1 0.8602 0.9526 0.8371 0.9733 0.8278 0.9775
minHL = 3,minhel = 2 0.8575 0.9494 0.8562 0.9609 0.8477 0.9651

Table 4: Sensitivity and PPV values for our tRNA database (computed by 10-fold cross-validation pro-
cedures, using sample size 1000).

MF struct. MEA struct. Centroid
Approach Parameters

Sens. PPV Sens. PPV Sens. PPV

PF maxBL = 30 0.5897 0.5806 0.6015 0.6191 0.5789 0.6508
SCFG minHL = 1,minhel = 1 0.4251 0.5362 0.3403 0.6967 0.2689 0.8044

minHL = 1,minhel = 2 0.4542 0.5435 0.3638 0.6901 0.2727 0.8069
minHL = 3,minhel = 1 0.4728 0.5290 0.3544 0.7033 0.2764 0.8091
minHL = 3,minhel = 2 0.5167 0.5577 0.3860 0.7010 0.2846 0.8140

LSCFG minHL = 1,minhel = 1 0.8996 0.9408 0.8959 0.9513 0.8873 0.9574
minHL = 1,minhel = 2 0.8726 0.9239 0.8714 0.9280 0.8673 0.9333
minHL = 3,minhel = 1 0.8992 0.9405 0.8958 0.9509 0.8863 0.9568
minHL = 3,minhel = 2 0.8721 0.9231 0.8712 0.9276 0.8667 0.9330

Table 5: Sensitivity and PPV values for our 5S rRNA database (computed by 10-fold cross-validation
procedures, using sample size 1000).

All corresponding sensitivity and PPV measures are collected in Tables 4, 5 and 6. Obviously, the
results for tRNAs and 5S rRNAs lead to the conclusion that by using the LSCFG approach for statistical
sampling, a significantly higher predictive accuracy can be reached than by sampling based on PFs.

14



MF struct. MEA struct. Centroid
Approach Parameters

Sens. PPV Sens. PPV Sens. PPV

PF maxBL = 30 0.6652 0.5188 0.6633 0.5450 0.6437 0.5799
SCFG minHL = 1,minhel = 1 0.4433 0.5447 0.3815 0.7386 0.3235 0.7749

minHL = 1,minhel = 2 0.4894 0.5551 0.4263 0.7181 0.3474 0.7743
minHL = 3,minhel = 1 0.4852 0.5948 0.3935 0.7426 0.3352 0.7825
minHL = 3,minhel = 2 0.5171 0.5661 0.4342 0.7228 0.3588 0.7683

LSCFG minHL = 1,minhel = 1 0.1815 0.5422 0.1390 0.7523 0.1251 0.8003
minHL = 1,minhel = 2 0.1646 0.5322 0.1276 0.6706 0.1099 0.7114
minHL = 3,minhel = 1 0.1761 0.5354 0.1396 0.7614 0.1238 0.8039
minHL = 3,minhel = 2 0.1528 0.5023 0.1230 0.6634 0.1094 0.7118

Table 6: Sensitivity and PPV values for the mixed S-151Rfam database (computed by two-fold cross-
validation procedures, using the same folds as in [DWB06] and sample size 1000).

Moreover, we immediately observe that eventually the incorporation of length-dependencies into the
SCFG approach can have a positive impact on the resulting prediction accuracy: Although the predictions
for the longer and thus more variant 5S rRNAs are less accurate than for the shorter tRNAs when using
the conventional SCFG approach, the consideration of length-dependent probabilities for the production
rules (obtained by training them on real world data) makes the underlying SCFG model explicit enough
to handle the larger variety of structure motifs and guarantees high quality prediction results.
However, as we expected, for the S-151Rfam database, the more specialized LSCFG approach yields
the worst prediction results, whereas the highest accuracy for this mixed data set is reached with PF
sampling that relies on thermodynamic parameters and is not suited for a particular RNA type. In
fact, this observation is strongly related to the fact that the S-151Rfam data set is rather sparse and
additionally contains structures that belong to distinct RNA types that obey to different structural
properties, such that it can not be considered an optimal training basis. This problem is considerably
increased by the partitioning of (the already rather few) data points according to the various interval
lengths for our LSCFG variant (which is actually in accordance with the worse results for the S-151Rfam
set compared to the rich and pure tRNA and 5S rRNA sets as presented in Table 3 of Section 4.3).
Altogether, we can assume that if a reasonable RNA secondary structure database (containing a suf-
ficiently large number of known structures that are of the same or similar RNA types) can be used
for estimating the parameters of the underlying LSCFG model, then even for RNA molecules with a
high variability of typical structural features (for which the traditional SCFG method lacks the ability
to identify the typical shape of the respective family by considering the estimated length-independent
parameters), the predictive results might be of high quality and potentially manage to outperform pre-
dictions obtained with the PF variant that is based on the competing free energy approach.

Approach Parameters MEA struct. Centroid

PF maxBL = 30 0.482435 0.526743
SCFG minHL = 1,minhel = 1 0.828522 0.833894

minHL = 1,minhel = 2 0.830787 0.839843
minHL = 3,minhel = 1 0.855406 0.861640
minHL = 3,minhel = 2 0.857251 0.867135

LSCFG minHL = 1,minhel = 1 0.936285 0.919736
minHL = 1,minhel = 2 0.916900 0.910218
minHL = 3,minhel = 1 0.936337 0.920387
minHL = 3,minhel = 2 0.916641 0.910321

Table 7: AUC values for our tRNA database (computed by 10-fold cross-validation procedures, using
sample size 1000).

All these observations may be affirmed on the basis of more reliable accuracy results which can be readily
obtained by computing a collection of additional predictions from each of the generated sample sets along
the following lines: According to [NSar] (inspired by [DWB06]), a trade-off parameter γt−o ∈ [0,∞) that
manages to control the balance between the sensitivity and PPV of the predicted foldings can easily be
incorporated into the procedures for calculating the MEA and centroid structures of a given sample set.
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Approach Parameters MEA struct. Centroid

PF maxBL = 30 0.481019 0.520171
SCFG minHL = 1,minhel = 1 0.409278 0.408549

minHL = 1,minhel = 2 0.417286 0.418584
minHL = 3,minhel = 1 0.419116 0.417095
minHL = 3,minhel = 2 0.433954 0.431642

LSCFG minHL = 1,minhel = 1 0.914801 0.918933
minHL = 1,minhel = 2 0.854520 0.863009
minHL = 3,minhel = 1 0.914114 0.918600
minHL = 3,minhel = 2 0.853399 0.862744

Table 8: AUC values for our 5S rRNA database (computed by 10-fold cross-validation procedures, using
sample size 1000).

Approach Parameters MEA struct. Centroid

PF maxBL = 30 0.450688 0.497350
SCFG minHL = 1,minhel = 1 0.499491 0.507125

minHL = 1,minhel = 2 0.506602 0.509403
minHL = 3,minhel = 1 0.507454 0.512327
minHL = 3,minhel = 2 0.508762 0.514958

LSCFG minHL = 1,minhel = 1 0.270606 0.269354
minHL = 1,minhel = 2 0.206630 0.208092
minHL = 3,minhel = 1 0.271388 0.266478
minHL = 3,minhel = 2 0.205790 0.209557

Table 9: AUC values for the mixed S-151Rfam database (computed by two-fold cross-validation proce-
dures, using the same folds as in [DWB06] and sample size 1000).

The corresponding results are referred to as γt−o-MEA and γt−o-centroid structures, respectively, where
the default choice γt−o = 1 has no effect and thus yields the previously described conventional results.
Hence, by allowing γt−o to vary, it effectively becomes possible to find corresponding receiver operating
characteristic (ROC) curves for MEA and centroid predictions, yielding much more meaningful accuracy
measures as the common sensitivity and PPV values for one particular choice of γt−o.
In fact, for γt−o ∈ {1.25k | −12 ≤ k ≤ −1} ∪ {2k | 0 ≤ k ≤ 12}, the respective estimated area under the
curve (AUC) values observed for any of the considered databases are reported in Tables 7, 8 and 9. Plots
of some of the respective ROC curves can be found in Figures 5, 6 and 7 of Section Sm-II). As intended,
the provided AUC values allow for a more reliable comparison of the accuracies that can be reached by
either approach on the basis of MEA and centroid structures for the produced samples, respectively, but
eventually yield basically the same conclusions.
Finally, it remains to mention that according to the definitions of sensitivity and PPV, these two accuracy
measures depend only on the numbers of correctly and incorrectly predicted base pairs (compared to the
native structure). For biologists, however, it is usually much more important to get the correct shape of
the native folding than to obtain high sensitivity and PPV when using computational prediction methods.
For this reason, a corresponding discussion will follow in the next section.

4.5 Sampling Quality – Specific Values Related to Shapes

The proclaimed aim of this section is to compare sampling results generated by the PF, SCFG and
LSCFG approaches with respect to an abstraction level (shapes of generated structures) that is of great
relevance for biologists. Particularly, we will consider a number of specific values related to the abstract
shapes of sampled structures to obtain further proof of the high quality of sample sets generated by the
proposed LSCFG approach.
Principally, abstract shapes (see e.g. [GVR04]) are morphic images of secondary structures, where each
shape comprises a class of similar structures. There are five shape types for five different levels of abstrac-
tion, where the succeeding shape types are supposed to gradually increase abstraction by disregarding
certain unpaired regions or combining nested helices. For the shape abstraction types as defined infor-
mally in [JRG08] (and for secondary structures as additional type 0 shapes), it has been proven that this
is the case indeed [NS09].
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In order to explore the sampling qualities that can be reached by the distinct sampling approaches, we
decided to consider the following four specific values related to the shapes of sampled secondary structures:

• Frequency of prediction of correct shape (CSPfreq): In how many cases is the predicted shape (on
different levels) equal to the correct one?

• Frequency of correct shape occurring in a sample (CSOfreq): In how many cases can the correct
shape be found in the generated sample?

• Number of occurrences of correct shape in a sample (CSnum): How many times can the correct
shape be found in the generated sample?

• Number of different shapes in a sample (DSnum): How many different shapes can be found in the
generated sample?

Shape Level
Value Approach Parameters

0 1 2 3 4 5

CSPfreq PF maxBL = 30 0.0633 0.1216 0.2071 0.2117 0.2639 0.3694
(MF struct.) SCFG minHL = 3,minhel = 1 0.2450 0.4448 0.6417 0.6417 0.6422 0.7356

LSCFG minHL = 3,minhel = 1 0.3440 0.5137 0.6805 0.6805 0.6810 0.7628
CSPfreq PF maxBL = 30 0.0416 0.1049 0.1923 0.1960 0.2496 0.3559

(MEA struct.) SCFG minHL = 3,minhel = 2 0.1008 0.2917 0.5525 0.5525 0.5543 0.6241
LSCFG minHL = 3,minhel = 2 0.2053 0.4115 0.6958 0.6958 0.6963 0.7869

CSPfreq PF maxBL = 30 0.0264 0.0800 0.1595 0.1627 0.1932 0.2677
(Centroid) SCFG minHL = 3,minhel = 2 0.0758 0.2150 0.4563 0.4563 0.4568 0.5003

LSCFG minHL = 3,minhel = 2 0.1956 0.3824 0.6426 0.6426 0.6431 0.7240

CSOfreq PF maxBL = 30 0.5196 0.6740 0.8160 0.8239 0.8798 0.9556
SCFG minHL = 3,minhel = 1 0.7148 0.9459 0.9875 0.9880 0.9885 0.9991

LSCFG minHL = 3,minhel = 1 0.8391 0.9441 0.9778 0.9783 0.9783 0.9986
CSnum PF maxBL = 30 21.073 58.200 136.67 140.63 205.54 328.56

SCFG minHL = 3,minhel = 2 34.898 173.73 513.05 513.06 513.08 595.26
LSCFG minHL = 3,minhel = 2 104.09 300.04 730.09 730.09 730.54 826.21

DSnum PF maxBL = 30 355.32 130.22 81.796 33.125 22.585 4.8848
SCFG minHL = 3,minhel = 2 592.84 103.04 18.921 18.921 18.921 12.053

LSCFG minHL = 3,minhel = 2 126.84 8.2815 2.7296 2.7296 2.7296 2.3869

Table 10: Results related to the shapes of selected predictions and sampled structures, obtained from our
tRNA database (by 10-fold cross-validation procedures, using sample size 1000).

The respective results are collected in Tables 14 to 19 in Section Sm-II. Some of the most interesting ones
are also displayed in Tables 10, 11 and 12. Note that all these specific values have been calculated from
the predicted structures and the corresponding sample sets that were derived for the calculation of the
sensitivity and PPV measures in the last section.
As regards the considered tRNAs and 5S rRNAs, the predicted shape is in most cases significantly more
often equal to the correct one when using the SCFG approach (length-dependent or not) instead of the
PF variant. That is, the frequency of correct structure predictions (CSPfreq) is often higher when using
the sophisticated SCFG instead of PFs, especially when length-dependence is considered. Moreover, the
statistical samples generated with either of the two different SCFG approaches generally contain the
correct shapes considerably more often than those obtained with the PF method, i.e. are more accurate
as regards the frequency of correct structure occurrences (CSOfreq). Notably, again the best results are
obtained with the LSCFG presented in this work (see Tables 10 and 11).
Furthermore, for tRNAs and 5Sr RNAs, the observed averaged number of correct shapes in a sample set
(CSnum) is in all cases to a large extend greater when using the LSCFG approach than when using the
length-independent variant or the PF method. However, due to these observations it is not surprising
that the observed averaged number of different shapes in a sample (DSnum) is always significantly smaller
when using the LSCFG approach rather than the PF and especially the traditional length-independent
SCFG variant (for which the by far highest diversity within the sample set can be reached). This means
by incorporating additional information on fragment lengths into the underlying sophisticated SCFG
model, a higher predictive accuracy with respect to the shapes of generated structures (on all abstraction
levels) can be reached, at the cost of a lower variability of the generated samples.
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Shape Level
Value Approach Parameters

0 1 2 3 4 5

CSPfreq PF maxBL = 30 0.0000 0.0009 0.0078 0.0513 0.0261 0.6353
(MF struct.) SCFG minHL = 3,minhel = 2 0.0009 0.0096 0.0244 0.0609 0.1027 0.8207

LSCFG minHL = 1,minhel = 1 0.2002 0.4239 0.4700 0.4857 0.9426 0.9861
CSPfreq PF maxBL = 30 0.0000 0.0052 0.0139 0.0835 0.0696 0.6640

(MEA struct.) SCFG minHL = 3,minhel = 2 0.0000 0.0009 0.0009 0.0035 0.0557 0.5387
LSCFG minHL = 3,minhel = 1 0.1062 0.4065 0.4456 0.4535 0.8990 0.9835

CSPfreq PF maxBL = 30 0.0000 0.0026 0.0104 0.0775 0.0731 0.7214
(Centroid) SCFG minHL = 3,minhel = 2 0.0000 0.0000 0.0000 0.0009 0.0139 0.1549

LSCFG minHL = 1,minhel = 1 0.0966 0.2916 0.3238 0.3316 0.8703 0.9686

CSOfreq PF maxBL = 30 0.0009 0.1662 0.3063 0.7580 0.6883 0.9817
SCFG minHL = 3,minhel = 2 0.0026 0.4509 0.6372 0.9904 0.9974 0.9991

LSCFG minHL = 1,minhel = 1 0.6258 0.8912 0.9295 0.9504 0.9948 1.0000
CSnum PF maxBL = 30 0.0009 0.7571 3.4207 36.641 30.288 600.35

SCFG minHL = 3,minhel = 2 0.0026 1.3795 3.1949 36.673 71.080 609.58
LSCFG minHL = 3,minhel = 1 42.962 347.97 422.19 457.71 875.13 983.67

DSnum PF maxBL = 30 710.75 333.72 237.71 93.335 63.661 7.0951
SCFG minHL = 3,minhel = 2 999.68 885.81 762.67 239.28 123.91 13.558

LSCFG minHL = 1,minhel = 2 148.01 10.076 8.5355 4.4627 3.5160 1.1297

Table 11: Results related to the shapes of selected predictions and sampled structures, obtained from our
5S rRNA database (by 10-fold cross-validation procedures, using sample size 1000).

Shape Level
Value Approach Parameters

0 1 2 3 4 5

CSPfreq PF maxBL = 30 0.0661 0.1255 0.1586 0.2050 0.2183 0.4834
(MF struct.) SCFG minHL = 3,minhel = 2 0.0530 0.1258 0.1522 0.1788 0.1985 0.4240

LSCFG minHL = 3,minhel = 1 0.0199 0.0532 0.0664 0.0730 0.0995 0.3179
CSPfreq PF maxBL = 30 0.0660 0.1123 0.1453 0.1984 0.2051 0.4902

(MEA struct.) SCFG minHL = 1,minhel = 2 0.0264 0.1193 0.1391 0.1523 0.1789 0.4239
LSCFG minHL = 3,minhel = 1 0.0132 0.0397 0.0530 0.0596 0.0794 0.2118

CSPfreq PF maxBL = 30 0.0793 0.1321 0.1653 0.1917 0.2449 0.5100
(Centroid) SCFG minHL = 3,minhel = 2 0.0197 0.0927 0.1125 0.1390 0.1391 0.3577

LSCFG minHL = 3,minhel = 1 0.0066 0.0397 0.0530 0.0596 0.0728 0.1722

CSOfreq PF maxBL = 30 0.3638 0.4433 0.4766 0.5231 0.6488 0.7947
SCFG minHL = 1,minhel = 2 0.2717 0.5630 0.6158 0.7284 0.8079 0.9605

LSCFG minHL = 1,minhel = 1 0.0463 0.2518 0.4041 0.5496 0.5960 0.8408
CSnum PF maxBL = 30 40.390 88.886 121.55 158.32 195.83 453.58

SCFG minHL = 3,minhel = 2 15.059 63.707 83.965 125.82 142.99 391.39
LSCFG minHL = 1,minhel = 1 4.6818 30.691 44.362 62.552 92.031 305.66

DSnum PF maxBL = 30 540.74 304.36 255.40 150.89 117.24 18.795
SCFG minHL = 3,minhel = 2 840.03 522.53 452.04 307.61 273.92 77.536

LSCFG minHL = 1,minhel = 2 568.66 172.46 143.60 72.662 57.327 9.5317

Table 12: Results related to the shapes of selected predictions and sampled structures, obtained from the
S-151Rfam database (by 2-fold cross-validation procedures, using sample size 1000).

However, the results for the mixed S-151Rfam data set presented in Table 12 show a completely different
picture. Most importantly, the considered specific values related to shapes are basically in all cases
better when length-dependencies are not considered, i.e. when sticking to the simple SCFG model. This
actually resembles the observations made in the last section for the sensitivity and PPV measures and
hence provides additional evidence that incorporating length-dependency into a SCFG model for RNA
secondary structures results in a much stronger dependence on the availability of a rich and pure training
set.
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5 Conclusions

In this article, we described how to extend the SCFG based statistical sampling method studied in [NSar]
to additionally incorporate length-dependencies, yielding a corresponding LSCFG variant that samples
possible foldings of a given RNA molecule recursively from the induced probability distribution. In par-
ticular, we evaluated a LSCFG based algorithm capable of producing a statistically representative sample
of secondary structures for a given RNA sequence in proportion to the distribution on the entire ensemble
of feasible foldings, where the corresponding distribution is immediately implied by the learned length-
dependent grammar parameters. Just like the conventional variant originated from [NSar], this LSCFG
method represents a probabilistic counterpart to the energy-based PF variant of Sfold (where structures
are sampled in proportion to their Boltzmann weights, guaranteeing a statistical representation of the
Boltzmann-weighted ensemble).

By performing a comprehensive comparative study of results obtained with the LSCFG, the traditional
SCFG and the PF variant, respectively, we showed that significant differences with respect to both
predictive accuracy and overall quality of generated sample sets are implied. Actually, we can conclude
that the ensemble distribution induced by the considered LSCFG approach is much more centered than
that induced by the conventional SCFG variant, and even seems to be slightly more centered than the
Boltzmann-distribution of possible structures. This effectively yields less variability during the sampling
process, resulting in a less diverse sample set that might contain typical structures significantly more often
than others. In principle, a higher prediction accuracy can be reached at the price of a lower diversity of
structures within generated sample sets. This is due to the higher explicitness of the underlying SCFG
model implied by training the probabilities of the production rules in a length-dependent way. However,
since the prediction accuracy is extremely high, the low variety within generated samples allows for the
usage of rather small sample sizes to obtain meaningful structure predictions for a given RNA sequence.
This indeed means that only a few candidate structures need to be sampled in order to derive high
quality predictions, in contrast to the traditional SCFG (and also to competing PF) approach where a
comparatively large number of structures needs to be generated in order to guarantee that the proposed
folding is sufficiently accurate (and reproducible).
A further positive aspect is that existing algorithms for calculating all inside and outside values and the
formulae for computing the needed sampling probabilities for statistical sampling as proposed in [NSar]
can easily be modified by a few simple changes to cope with the extended SCFG model without sig-
nificant losses in performance. Consequently, for particular RNA types, the extended LSCFG approach
studied in this work might be able to improve the sampling quality (with respect to the investigated
applications) over the conventional one, and especially over the PF variant, while the worst-case time
and space complexities remain the same.

Taking all observations made throughout Section 4 into account, we may conclude that by adding length-
dependency to the corresponding stochastic structure model (i.e. taking the lengths of generated sub-
structures into account when learning the grammar parameters) can make a particular SCFG model (for a
specific class of RNAs) more explicit and thus more powerful. As a consequence, the quality of generated
samples with respect to the diverse applications investigated within this article becomes more indepen-
dent of (the complexity of) the specified RNA type than when employing the simple SCFG variant (where
the sampling quality seems to strongly depend on the structural variety and typical molecule length of
the considered type of RNA). This overcomes the major drawback of probabilistic over energy-based sta-
tistical sampling techniques already formulated in [NSar], namely that the extend of improvement that
can be reached by SCFG based sampling over the sampling with PFs seems to strongly depend on the
considered RNA type.
In contrast to this benefit, however, there are also a number of undesirable pitfalls that come with the
additional incorporation of length-dependencies. In fact, a potential overfitting and lack of generalization
of the probabilistic structure model seems to become more likely, the first mainly for rather sparse
training sets that are subject to high structural diversity and the latter at least for low invariant RNA
types like tRNAs that obey to a single typical shape like the cloverleaf structure. Furthermore, the higher
dependence on the availability of a rich training set caused by extending the underlying sophisticated
SCFG model to a more explicit length-dependent one reduces the applicability of the corresponding
probabilistic sampling approach in practice, especially for molecules where there exists hardly knowledge
on the typical structural behavior of their family (in the form of trusted RNA databases).
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Supplementary Material

Sm-I Computing Inside and Outside Probabilities

In order the determine all inside and outside variables for a given sequence r, we decided to use the
LSCFG Gs as the basis for a special version of Earley’s algorithm. In particular, we chose to rely on the
formalism presented in [Goo98, Goo99] for describing parsers, which is called semiring parsing.

Sm-I.1 Notations

Let RGs,• denote the set containing exactly the so-called dotted rules that are considered by Earley’s
algorithm for grammar Gs. Accordingly, byRGs,•(rule) we denote the set of all dotted rules corresponding
to the original rule rule ∈ RGs . Moreover, for any A ∈ IGs , let RA = {rule ∈ RGs,• | rule = A→ γ•}.
Briefly, the corresponding semiring parser computes inside and outside values for so-called items
[i, ind(rule), j], where for a given input word r of length n, i and j, 1 ≤ i, j ≤ n + 1, define posi-
tions in r (from in front of the first character to after the last character) and ind(rule) denotes the
index of production rule ∈ RGs,• in an appropriate ordering of RGs,•. Particularly, an item of the form

[i, ind(A→ α • β), j] asserts that A⇒ αβ
∗⇒ ri . . . rj−1β.

Note that eventually, the needed inside and outside values αA(i, j) = Pr(A⇒∗lm ri . . . rj) and βA(i, j) =
Pr(S ⇒∗lm r1 . . . ri−1 A rj+1 . . . rn), A ∈ IGs and 1 ≤ i, j ≤ n, can easily be derived from the correspond-
ing results for items [i, ind(A→ γ•), j].

Sm-I.2 Ordering of Items

In order to guarantee the correctness of the respective algorithms for calculating the inside and outside
values of all items [i, ind(rule), j], i, j ∈ {1, . . . , n+ 1} and rule ∈ RGs , the items have to be ordered such
that no item precedes any other item on which it depends. Obviously, we can use the same ordering as
defined in [NSar], that is:

• First and last parameters i, j ∈ {1, . . . , n + 1} are ordered according to the consideration of items
induced by Earley’s algorithm and

• an appropriate ordering of the considered rule set RGs,• is given by indices (p, q), where p ∈
{1, . . . , card(RGs)} and q ∈ {0, . . . , k(p)} with k(p) denoting the conclusion length of the production
rule ∈ RGs indexed by p.

Particularly, the grammar rules are ordered by first index p ∈ {1, . . . , card(RGs)} as follows:

Index p Rule r Index p Rule r Index p Rule r Index p Rule r

1 Z → ◦◦◦ , 2 A→ (((msL)))ms , 3 P → (((L))),
4 C → ZC, 5 C → Z, 6 H → ZH, 7 H → Z,
8 B → ZB, 9 B → Z, 10 U → ZU , 11 U → ε,

12 T → C, 13 T → A, 14 T → CA,
15 T → AT , 16 T → CAT , 17 F → Zmh−1H,
18 G→ BA, 19 G→ AB, 20 G→ BAB,
21 M → UAO, 22 O → UAN , 23 N → UAN , 24 N → U ,
25 L→ F , 26 L→ P , 27 L→ G, 28 L→M ,
29 S → T .

For any rule ∈ RGs with first index p ∈ {1, . . . , card(RGs)}, the corresponding k(p) + 1 dotted rules
in RGs,•(rule) are ordered according to the actual positions of symbol •, such that q ∈ {0, . . . , k(p)}
corresponds to the dotted rule rule ∈ RGs,•(rule) in which symbol • occurs after the qth symbol in the
conclusion.

Sm-I.3 Inside and Outside Values of Items

The corresponding modified versions of the inside and outside algorithms from [NSar] are given by
Algorithms 1 and 2. These two modified algorithms show how to perform the complete inside computation
and – once the inside values are computed – how to calculate the corresponding outside values of all items.
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Algorithm 1 Computation of Inside Values

Require: RNA sequence r of length n ≥ 1,
set RGs,• of production rules used by Earley’s algorithm, and
rule probabilities P(rule, l) of the productions rule ∈ RGs , as well as
emission probabilities P(x, l) of unpaired bases x ∈ {a, c, g, u} and
emission probabilities P(x1x2, l) of base pair x1x2 ∈ {a, c, g, u}2,
all trained on the same RNA structure data.

for j = 1 . . . n+ 1 do
for i = j . . . 1 do

for p = 1 . . . card(RGs) do
for q = 0 . . . k(p) do

rule = ind−1(p, q) /*rule ∈ RGs,• is the rule having index (p, q) in our ordering.*/
if rule = A→ αwj−1 • β then

/* Scanning: */
if wj−1 =′ ◦◦◦ ′ then

IN[i, (p, q), j] = P(rj−1, 1) · IN[i, (p, q − 1), j − 1]
else if wj−1 =′ (((′ then

IN[i, (p, q), j] = IN[i, (p, q − 1), j − 1]
else if wj−1 =′ )))′ then

IN[i, (p, q), j] = P(rirj−1, (j − 1)− i+ 1) · IN[i, (p, q − 1), j − 1]
end if
if q = k(p) /*rule = A→ αwj−1•, i.e. rule is completed in this scanning step.*/ then

IN[i, (p, q), j] = IN[i, (p, q), j] · P(A→ αwj−1, len(A→ αwj−1) = (j − 1)− i+ 1)
end if

else if rule = B → •γ then
/* Prediction: */
if γ = ε /*rule is ε-rule.*/ then

IN[j, (p, q), j] = P(B → γ, 0)
else

IN[j, (p, q), j] = 1
end if

else if rule = A→ αB • β then
/* Completion: */
IN[i, (p, q), j] =

∑
i≤k≤j

(
IN[i, (p, q − 1), k] ·

(∑
ruleB∈RB IN[k, ind(ruleB), j]

))
if q = k(p) /*rule = A→ αB•, i.e. rule is completed.*/ then

IN[i, (p, q), j] = IN[i, (p, q), j] · P(A→ αB, len(A→ αB) = (j − 1)− i+ 1)
end if

end if
end for

end for
end for

end for

Note that for the sake of simplicity and in order to demonstrate that both algorithms work in either case
(length-dependent or not), we used the following notation:

P(A→ α, l) :=

{
Pr(A→ α, l) · 1/cα,l if length-dependent,

Pr(A→ α) else.

P(x, l) and P(x1x2, l) are defined accordingly. However, it should be mentioned that in our algorithms,
we are actually using the probability P(A→ (((msL)))ms , j − i+ 1) · P(xixj , j − i+ 1) · P(xi+1xj−1, j − i+
1− 2) ·P(xi+2xj−2, j− i+ 1− 4) · · ·P(xi+(ms−1)xj−(ms−1), j− i+ 1− 2 · (ms− 1)) for the initialization of
a helix (of minimum allowed size ms := minhel) with first base pair i.j, which is not quite right. In fact,
going strictly with the formal definition, we would have to consider the term P(A → (((msL)))ms , j − i +
1) · P(xixi+1xi+2 . . . xi+(ms−1)xj−(ms−1) . . . xj−2xj−1xj , j − i + 1) which means if minhel > 1 is chosen,
we would have to derive and use an additional set of emission probabilities for any possible combination
of minhel consecutive base pairs. Nevertheless, this inaccuracy can easily be corrected by modifying our
grammar definition such that production p9 : A→ (((msL)))ms can be simulated by the composition of new
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Algorithm 2 Computation of Outside Values

Require: RNA sequence r of length n ≥ 1,
set RGs,• of production rules used by Earley’s algorithm, and
rule probabilities P(rule, l) of the productions rule ∈ RGs , as well as
emission probabilities P(x, l) of unpaired bases x ∈ {a, c, g, u} and
emission probabilities P(x1x2, l) of base pair x1x2 ∈ {a, c, g, u}2,
all trained on the same RNA structure data, and also
the corresponding inside values (computed by Algorithm 1).

OUT[1, ind(S → T•), n+ 1] = 1
for j = n+ 1 . . . 1 do

for i = 1 . . . j do
for p = card(RGs) . . . 1 do

for q = k(p) . . . 0 do
rule = ind−1(p, q) /*rule ∈ RGs,• is the rule having index (p, q) in our ordering.*/
if rule = A→ αwj • β then

/* Scanning (reverse): */
if wj =′ ◦◦◦ ′ then

OUT[i, (p, q − 1), j] = P(rj , 1) ·OUT[i, (p, q), j + 1]
else if wj =′ (((′ then

OUT[i, (p, q − 1), j] = OUT[i, (p, q), j + 1]
else if wj =′ )))′ then

OUT[i, (p, q − 1), j] = P(rirj , j − i+ 1) ·OUT[i, (p, q), j + 1]
end if
if q = k(p) /*rule = A→ αwj•, i.e. rule is completed in this scanning step.*/ then

OUT[i, (p, q − 1), j] = OUT[i, (p, q − 1), j] · P(A→ αwj , len(A→ αwj) = j − i+ 1)
end if

else if rule = B → •γ then
/* Prediction (reverse): */
do nothing

else if rule = A→ αB • β then
/* Completion (reverse): */
if q = k(p) /*rule = A→ αB•, i.e. rule is completed.*/ then

fact = P(A→ αB, len(A→ αB) = (j − 1)− i+ 1)
else

fact = 1
end if
for k = i . . . j do

OUT[i, (p, q − 1), k] =
OUT[i, (p, q − 1), k] +

(
OUT[i, (p, q), j] ·

(∑
ruleB∈RB IN[k, ind(ruleB), j]

))
· fact

for ruleB ∈ RB do
OUT[k, ind(ruleB), j] =

OUT[k, ind(ruleB), j] + (OUT[i, (p, q), j] · IN[i, (p, q − 1), k]) · fact
end for

end for
end if

end for
end for

end for
end for

productions p9 : A → (((A1))), 1 : A1 → (((A2))), 1 : A2 → (((A3))), . . . , 1 : Ams−1 → (((L))). Then, our algorithms
work conform with the formal definition.
Finally, note that by factoring in the rule probability P(A → α, l) of production A → α ∈ RGs in
the last scanning or completion steps of the corresponding items [i, ind(A → α•), j], 1 ≤ i, j ≤ n + 1,
instead of as usually done initially in the prediction steps of the corresponding items [i, ind(A→ •α), j],
this rule probability P(A → α, l) is not incorporated as a factor into the corresponding inside values
[i, ind(A → α • β), j], 1 ≤ i, j ≤ n + 1, if β 6= ε. This means these values are not correctly computed.
However, for β = ε, the inside values of items [i, ind(A→ α • β), j] = [i, ind(A→ α•), j], 1 ≤ i, j ≤ n+ 1,
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are correctly calculated.

Sm-I.4 Deriving the Needed Inside and Outside Probabilities

Since for a given sequence r of length n, an item of the form [i, ind(A→ α•), j + 1], 1 ≤ i, j ≤ n, asserts

that A⇒ α
∗⇒ ri . . . rj , we have

αA(i, j) =
∑

rule∈RA

IN[i, ind(rule), j + 1]

and
βA(i, j) = max

rule∈RA
OUT[i, ind(rule), j + 1].

For details, we refer to [NSar]. It should be noted, however, that for any given RNA sequence r of size
n, the considered inside values of items of the form [i, ind(A→ γ•), j + 1], that is of items [i, ind(rule ∈
RA), j + 1], for each intermediate symbol A ∈ IGs and 1 ≤ i, j ≤ n, are always correctly calculated (see
above). Hence, the corresponding traditional inside probabilities αA(i, j) are accurately derived. The
same holds for the corresponding outside values.
Finally, we observe that the modifications that led to Algorithms 1 and 2 do not imply a significant
additional computation effort. Therefore, for a sequence r of size n, there still results cubic time com-
plexity and quadratic memory requirement in the worst case for the computation of all inside and outside
probabilities αA(i, j) and βA(i, j), A ∈ IGs and 1 ≤ i, j ≤ n.

25



Sm-II Tables and Figures

V[·] tRNA 5S rRNA S-151Rfam
p1 0 0 0
p2 5.747× 10−8 2.232× 10−6 1.613× 10−5

p3 1.223× 10−7 6.635× 10−6 8.673× 10−6

p4 3.745× 10−8 2.718× 10−6 1.012× 10−5

p5 9.954× 10−7 3.437× 10−6 1.983× 10−5

p6 9.579× 10−7 1.697× 10−6 4.120× 10−5

p7 8.853× 10−6 2.849× 10−5 7.766× 10−6

p8 8.853× 10−6 2.849× 10−5 7.766× 10−6

p9 0 0 0
p10 0 0 0
p11 4.541× 10−9 1.385× 10−9 1.362× 10−6

p12 2.645× 10−8 8.330× 10−8 2.264× 10−6

p13 8.500× 10−9 6.674× 10−8 4.074× 10−6

p14 6.762× 10−10 3.464× 10−10 3.270× 10−7

p15 0 0 0
p16 1.234× 10−8 7.211× 10−9 5.812× 10−6

p17 1.234× 10−8 7.211× 10−9 5.812× 10−6

p18 0 1.152× 10−6 5.352× 10−5

p19 0 3.919× 10−7 2.957× 10−5

p20 0 4.502× 10−7 8.094× 10−5

p21 2.695× 10−3 2.997× 10−8 4.429× 10−5

p22 2.695× 10−3 2.997× 10−8 4.429× 10−5

p23 0 0 0
p24 0 0 0
p25 0 0 1.333× 10−4

p26 0 0 1.333× 10−4

p27 4.052× 10−7 1.561× 10−7 1.347× 10−4

p28 4.052× 10−7 1.561× 10−7 1.347× 10−4

p29 0 0 0

Table 13: Truncated variances of grammar parameters (transition probabilities), derived from 100 itera-
tions of training the traditional (length-independent) SCFG Gs on random subsets containing 90 percent
of the original data, respectively, under the assumption of minHL = 3 and minhel = 2.
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CSPfreq (selection principle MF struct.):

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0633 0.1216 0.2071 0.2117 0.2639 0.3694
SCFG minHL = 1,minhel = 1 0.2099 0.3699 0.5594 0.5594 0.5599 0.6302

minHL = 1,minhel = 2 0.2187 0.3833 0.5830 0.5830 0.5835 0.6607
minHL = 3,minhel = 1 0.2450 0.4448 0.6417 0.6417 0.6422 0.7356
minHL = 3,minhel = 2 0.2409 0.4364 0.6399 0.6399 0.6403 0.7379

LSCFG minHL = 1,minhel = 1 0.3278 0.4896 0.6565 0.6570 0.6570 0.7341
minHL = 1,minhel = 2 0.2936 0.4018 0.6792 0.6792 0.6796 0.7642
minHL = 3,minhel = 1 0.3440 0.5137 0.6805 0.6805 0.6810 0.7628
minHL = 3,minhel = 2 0.2982 0.4124 0.6963 0.6963 0.6967 0.7873

CSPfreq (selection principle MEA struct.):

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0416 0.1049 0.1923 0.1960 0.2496 0.3559
SCFG minHL = 1,minhel = 1 0.0555 0.2094 0.4193 0.4193 0.4207 0.4679

minHL = 1,minhel = 2 0.0656 0.2446 0.4961 0.4961 0.4984 0.5613
minHL = 3,minhel = 1 0.0772 0.2510 0.4928 0.4928 0.4942 0.5497
minHL = 3,minhel = 2 0.1008 0.2917 0.5525 0.5525 0.5543 0.6241

LSCFG minHL = 1,minhel = 1 0.1854 0.3574 0.4919 0.4919 0.4919 0.5465
minHL = 1,minhel = 2 0.1956 0.4013 0.6824 0.6824 0.6829 0.7712
minHL = 3,minhel = 1 0.1951 0.3676 0.4979 0.4984 0.4979 0.5552
minHL = 3,minhel = 2 0.2053 0.4115 0.6958 0.6958 0.6963 0.7869

CSPfreq (selection principle Centroid):

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0264 0.0800 0.1595 0.1627 0.1932 0.2677
SCFG minHL = 1,minhel = 1 0.0374 0.1276 0.2973 0.2973 0.2978 0.3130

minHL = 1,minhel = 2 0.0485 0.1623 0.3791 0.3791 0.3800 0.4097
minHL = 3,minhel = 1 0.0536 0.1665 0.3773 0.3773 0.3778 0.4060
minHL = 3,minhel = 2 0.0758 0.2150 0.4563 0.4563 0.4568 0.5003

LSCFG minHL = 1,minhel = 1 0.1729 0.3158 0.4300 0.4300 0.4300 0.4762
minHL = 1,minhel = 2 0.1877 0.3768 0.6362 0.6362 0.6366 0.7157
minHL = 3,minhel = 1 0.1812 0.3199 0.4304 0.4304 0.4304 0.4780
minHL = 3,minhel = 2 0.1956 0.3824 0.6426 0.6426 0.6431 0.7240

Table 14: Results related to the shapes of selected predictions, obtained from our tRNA database (by
10-fold cross-validation procedures, using sample size 1000).
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CSOfreq:

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.5196 0.6740 0.8160 0.8239 0.8798 0.9556
SCFG minHL = 1,minhel = 1 0.6838 0.9459 0.9903 0.9903 0.9908 0.9995

minHL = 1,minhel = 2 0.6806 0.9006 0.9630 0.9635 0.9640 0.9991
minHL = 3,minhel = 1 0.7148 0.9459 0.9875 0.9880 0.9885 0.9991
minHL = 3,minhel = 2 0.7111 0.8997 0.9677 0.9681 0.9686 0.9995

LSCFG minHL = 1,minhel = 1 0.8234 0.9288 0.9723 0.9750 0.9727 0.9986
minHL = 1,minhel = 2 0.5479 0.8100 0.9006 0.9011 0.9011 0.9963
minHL = 3,minhel = 1 0.8391 0.9441 0.9778 0.9783 0.9783 0.9986
minHL = 3,minhel = 2 0.5479 0.8160 0.9015 0.9015 0.9020 0.9963

CSnum:

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 21.073 58.200 136.67 140.63 205.54 328.56
SCFG minHL = 1,minhel = 1 16.202 98.357 327.26 327.27 327.51 418.80

minHL = 1,minhel = 2 25.205 142.50 453.03 453.03 453.10 527.04
minHL = 3,minhel = 1 24.883 130.04 392.78 392.79 393.05 494.79
minHL = 3,minhel = 2 34.898 173.73 513.05 513.06 513.08 595.26

LSCFG minHL = 1,minhel = 1 101.69 326.26 708.52 708.94 709.42 805.87
minHL = 1,minhel = 2 101.77 294.14 717.92 717.92 718.37 811.29
minHL = 3,minhel = 1 102.65 331.18 717.08 717.54 718.10 818.76
minHL = 3,minhel = 2 104.09 300.04 730.09 730.09 730.54 826.21

DSnum:

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 355.32 130.22 81.796 33.125 22.585 4.8848
SCFG minHL = 1,minhel = 1 802.27 244.52 60.504 60.030 59.916 28.764

minHL = 1,minhel = 2 652.75 125.69 24.687 24.687 24.687 16.019
minHL = 3,minhel = 1 752.71 208.65 48.257 47.797 47.691 21.838
minHL = 3,minhel = 2 592.84 103.04 18.921 18.921 18.921 12.053

LSCFG minHL = 1,minhel = 1 238.30 15.045 5.6854 5.4122 5.1806 3.2274
minHL = 1,minhel = 2 125.37 8.2070 2.6736 2.6736 2.6736 2.4123
minHL = 3,minhel = 1 244.62 16.121 6.1883 5.8268 5.6244 3.1974
minHL = 3,minhel = 2 126.84 8.2815 2.7296 2.7296 2.7296 2.3869

Table 15: Results related to the shapes of sampled structures, obtained from our tRNA database (by
10-fold cross-validation procedures, using sample size 1000).
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CSPfreq (selection principle MF struct.):

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0000 0.0009 0.0078 0.0513 0.0261 0.6353
SCFG minHL = 1,minhel = 1 0.0000 0.0026 0.0052 0.0131 0.0357 0.7128

minHL = 1,minhel = 2 0.0000 0.0052 0.0139 0.0331 0.0522 0.7502
minHL = 3,minhel = 1 0.0000 0.0044 0.0113 0.0314 0.0766 0.7781
minHL = 3,minhel = 2 0.0009 0.0096 0.0244 0.0609 0.1027 0.8207

LSCFG minHL = 1,minhel = 1 0.2002 0.4239 0.4700 0.4857 0.9426 0.9861
minHL = 1,minhel = 2 0.0000 0.0087 0.0087 0.0522 0.9321 0.9948
minHL = 3,minhel = 1 0.1984 0.4221 0.4710 0.4857 0.9391 0.9835
minHL = 3,minhel = 2 0.0000 0.0087 0.0087 0.0522 0.9313 0.9948

CSPfreq (selection principle MEA struct.):

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0000 0.0052 0.0139 0.0835 0.0696 0.6640
SCFG minHL = 1,minhel = 1 0.0000 0.0000 0.0000 0.0000 0.0261 0.3820

minHL = 1,minhel = 2 0.0000 0.0009 0.0009 0.0035 0.0566 0.4769
minHL = 3,minhel = 1 0.0000 0.0000 0.0000 0.0009 0.0261 0.3977
minHL = 3,minhel = 2 0.0000 0.0009 0.0009 0.0035 0.0557 0.5387

LSCFG minHL = 1,minhel = 1 0.1062 0.3891 0.4290 0.4378 0.9051 0.9835
minHL = 1,minhel = 2 0.0000 0.0078 0.0078 0.0514 0.9078 0.9957
minHL = 3,minhel = 1 0.1062 0.4065 0.4456 0.4535 0.8990 0.9835
minHL = 3,minhel = 2 0.0000 0.0078 0.0078 0.0540 0.9078 0.9948

CSPfreq (selection principle Centroid):

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0000 0.0026 0.0104 0.0775 0.0731 0.7214
SCFG minHL = 1,minhel = 1 0.0000 0.0000 0.0000 0.0000 0.0104 0.1097

minHL = 1,minhel = 2 0.0000 0.0000 0.0000 0.0000 0.0148 0.1279
minHL = 3,minhel = 1 0.0000 0.0000 0.0000 0.0000 0.0078 0.1236
minHL = 3,minhel = 2 0.0000 0.0000 0.0000 0.0009 0.0139 0.1549

LSCFG minHL = 1,minhel = 1 0.0966 0.2916 0.3238 0.3316 0.8703 0.9686
minHL = 1,minhel = 2 0.0000 0.0061 0.0061 0.0426 0.8982 0.9887
minHL = 3,minhel = 1 0.0949 0.2951 0.3281 0.3386 0.8660 0.9712
minHL = 3,minhel = 2 0.0000 0.0070 0.0070 0.0453 0.8982 0.9861

Table 16: Results related to the shapes of selected predictions, obtained from our 5S rRNA database (by
10-fold cross-validation procedures, using sample size 1000).
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CSOfreq:

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0009 0.1662 0.3063 0.7580 0.6883 0.9817
SCFG minHL = 1,minhel = 1 0.0000 0.2855 0.4526 0.9852 0.9974 1.0000

minHL = 1,minhel = 2 0.0017 0.4135 0.5754 0.9861 0.9983 0.9991
minHL = 3,minhel = 1 0.0000 0.3308 0.4883 0.9904 0.9974 1.0000
minHL = 3,minhel = 2 0.0026 0.4509 0.6372 0.9904 0.9974 0.9991

LSCFG minHL = 1,minhel = 1 0.6258 0.8912 0.9295 0.9504 0.9948 1.0000
minHL = 1,minhel = 2 0.0000 0.0374 0.0392 0.5588 0.9957 1.0000
minHL = 3,minhel = 1 0.6197 0.8938 0.9286 0.9547 0.9948 1.0000
minHL = 3,minhel = 2 0.0000 0.0435 0.0453 0.5822 0.9948 1.0000

CSnum:

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0009 0.7571 3.4207 36.641 30.288 600.35
SCFG minHL = 1,minhel = 1 0.0000 0.5432 1.1811 20.640 51.834 573.72

minHL = 1,minhel = 2 0.0017 1.1428 2.6615 32.051 64.332 608.06
minHL = 3,minhel = 1 0.0000 0.6651 1.4309 22.983 54.635 569.80
minHL = 3,minhel = 2 0.0026 1.3795 3.1949 36.673 71.080 609.58

LSCFG minHL = 1,minhel = 1 42.599 347.33 421.29 455.78 881.11 983.88
minHL = 1,minhel = 2 0.0000 8.2238 8.3039 51.288 890.71 993.23
minHL = 3,minhel = 1 42.962 347.97 422.19 457.71 875.13 983.67
minHL = 3,minhel = 2 0.0000 8.2082 8.2918 51.573 884.49 993.06

DSnum:

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 710.75 333.72 237.71 93.335 63.661 7.0951
SCFG minHL = 1,minhel = 1 999.67 941.77 866.98 336.69 167.10 16.476

minHL = 1,minhel = 2 999.18 884.49 764.79 249.02 129.35 14.198
minHL = 3,minhel = 1 999.93 947.19 874.03 331.75 163.09 15.620
minHL = 3,minhel = 2 999.68 885.81 762.67 239.28 123.91 13.558

LSCFG minHL = 1,minhel = 1 318.99 24.878 19.283 8.2879 4.4246 1.2088
minHL = 1,minhel = 2 148.01 10.076 8.5355 4.4627 3.5160 1.1297
minHL = 3,minhel = 1 325.18 26.023 20.266 8.4599 4.4933 1.2114
minHL = 3,minhel = 2 150.56 10.411 8.8139 4.5323 3.5690 1.1279

Table 17: Results related to the shapes of sampled structures, obtained from our 5S rRNA database (by
10-fold cross-validation procedures, using sample size 1000).
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CSPfreq (selection principle MF struct.):

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0661 0.1255 0.1586 0.2050 0.2183 0.4834
SCFG minHL = 1,minhel = 1 0.0530 0.0993 0.1191 0.1324 0.1589 0.3776

minHL = 1,minhel = 2 0.0398 0.1193 0.1457 0.1656 0.1856 0.4106
minHL = 3,minhel = 1 0.0530 0.1259 0.1390 0.1590 0.1789 0.4107
minHL = 3,minhel = 2 0.0530 0.1258 0.1522 0.1788 0.1985 0.4240

LSCFG minHL = 1,minhel = 1 0.0199 0.0465 0.0597 0.0663 0.0995 0.3245
minHL = 1,minhel = 2 0.0132 0.0465 0.0532 0.0664 0.0797 0.2982
minHL = 3,minhel = 1 0.0199 0.0532 0.0664 0.0730 0.0995 0.3179
minHL = 3,minhel = 2 0.0132 0.0532 0.0598 0.0664 0.0731 0.2916

CSPfreq (selection principle MEA struct.):

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0660 0.1123 0.1453 0.1984 0.2051 0.4902
SCFG minHL = 1,minhel = 1 0.0264 0.0927 0.0993 0.1125 0.1325 0.3778

minHL = 1,minhel = 2 0.0264 0.1193 0.1391 0.1523 0.1789 0.4239
minHL = 3,minhel = 1 0.0264 0.0927 0.0993 0.1125 0.1325 0.3777
minHL = 3,minhel = 2 0.0197 0.1127 0.1391 0.1656 0.2055 0.4109

LSCFG minHL = 1,minhel = 1 0.0132 0.0397 0.0530 0.0530 0.0927 0.2118
minHL = 1,minhel = 2 0.0000 0.0332 0.0332 0.0398 0.0663 0.2254
minHL = 3,minhel = 1 0.0132 0.0397 0.0530 0.0596 0.0794 0.2118
minHL = 3,minhel = 2 0.0000 0.0398 0.0465 0.0465 0.0663 0.1854

CSPfreq (selection principle Centroid):

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0793 0.1321 0.1653 0.1917 0.2449 0.5100
SCFG minHL = 1,minhel = 1 0.0197 0.0861 0.1059 0.1190 0.1258 0.3181

minHL = 1,minhel = 2 0.0197 0.0795 0.0926 0.1191 0.1192 0.3578
minHL = 3,minhel = 1 0.0197 0.0795 0.0926 0.1125 0.1125 0.3181
minHL = 3,minhel = 2 0.0197 0.0927 0.1125 0.1390 0.1391 0.3577

LSCFG minHL = 1,minhel = 1 0.0132 0.0397 0.0530 0.0530 0.0729 0.1656
minHL = 1,minhel = 2 0.0000 0.0265 0.0332 0.0332 0.0663 0.1590
minHL = 3,minhel = 1 0.0066 0.0397 0.0530 0.0596 0.0728 0.1722
minHL = 3,minhel = 2 0.0000 0.0332 0.0398 0.0398 0.0596 0.1590

Table 18: Results related to the shapes of selected predictions, obtained from the S-151Rfam database
(by 2-fold cross-validation procedures, using sample size 1000).
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CSOfreq:

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.3638 0.4433 0.4766 0.5231 0.6488 0.7947
SCFG minHL = 1,minhel = 1 0.2520 0.5497 0.6095 0.6888 0.7683 0.9604

minHL = 1,minhel = 2 0.2717 0.5630 0.6158 0.7284 0.8079 0.9605
minHL = 3,minhel = 1 0.2518 0.5429 0.6093 0.7218 0.7815 0.9472
minHL = 3,minhel = 2 0.2715 0.5564 0.6027 0.7087 0.7484 0.9604

LSCFG minHL = 1,minhel = 1 0.0463 0.2518 0.4041 0.5496 0.5960 0.8408
minHL = 1,minhel = 2 0.0397 0.2320 0.3381 0.4635 0.5033 0.7282
minHL = 3,minhel = 1 0.0463 0.2582 0.3908 0.5295 0.5825 0.8075
minHL = 3,minhel = 2 0.0331 0.1922 0.2982 0.4305 0.4635 0.6818

CSnum:

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 40.390 88.886 121.55 158.32 195.83 453.58
SCFG minHL = 1,minhel = 1 10.743 47.281 63.587 97.088 121.64 362.44

minHL = 1,minhel = 2 12.968 58.796 78.776 115.96 139.09 387.16
minHL = 3,minhel = 1 12.468 51.569 67.603 104.67 125.50 365.84
minHL = 3,minhel = 2 15.059 63.707 83.965 125.82 142.99 391.39

LSCFG minHL = 1,minhel = 1 4.6818 30.691 44.362 62.552 92.031 305.66
minHL = 1,minhel = 2 3.2041 36.090 48.338 62.027 98.212 293.97
minHL = 3,minhel = 1 4.0326 28.718 41.792 59.675 86.897 300.72
minHL = 3,minhel = 2 3.3858 35.005 46.601 57.815 92.288 286.40

DSnum:

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 540.74 304.36 255.40 150.89 117.24 18.795
SCFG minHL = 1,minhel = 1 892.14 600.39 526.36 368.49 322.88 99.601

minHL = 1,minhel = 2 849.32 538.56 466.17 322.99 286.12 84.480
minHL = 3,minhel = 1 888.89 588.97 516.66 358.72 315.25 94.603
minHL = 3,minhel = 2 840.03 522.53 452.04 307.61 273.92 77.536

LSCFG minHL = 1,minhel = 1 729.44 249.69 201.75 102.87 78.918 13.381
minHL = 1,minhel = 2 568.66 172.46 143.60 72.662 57.327 9.5317
minHL = 3,minhel = 1 725.66 264.33 217.20 110.27 85.455 13.484
minHL = 3,minhel = 2 563.23 180.29 151.89 74.803 59.977 8.9805

Table 19: Results related to the shapes of sampled structures, obtained from the S-151Rfam database
(by 2-fold cross-validation procedures, using sample size 1000).

32



0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Hplot

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Hplot

(a)

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Bplot

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Bplot

(b)

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Iplot

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Iplot

(c)

Figure 3
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Figure 3: Comparsion of loop profiles for E.coli tRNAAla, obtained with the PF approach and the
length-dependent SCFG variant. Hplot, Bplot, Iplot, Mplot and Extplot display the probability that
an unpaired base lies in a hairpin, bulge, interior, multibranched and exterior loop, respectively. For
each considered variant, these five probabilities are computed by a sample of 1000 structures generated
by using maxBL = 30. Results for the PF approach are displayed by the thin black lines. For the
SCFG approach, we chose minhel = 1 (thick gray lines) and minhel = 2 (thick dashed darker gray lines),
combined with minHL = 1 (figures shown on the left) and minHL = 3 (figures on the right), respectively.
The corresponding probabilities for the correct structure of E.coli tRNAAla are also displayed (by black
points).
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Figure 4
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Figure 4: Loop profiles for E.coli tRNAAla corresponding to those presented in Figure 3, obtained with
the PF approach and the traditional SCFG variant that does not incorporate length-dependencies.
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(a) PF approach (with parameter maxBL = 30).
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(b) SCFG approach (with the most realistic parameter combination minHL = 3 and minhel = 2).
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(c) Length-dependent SCFG approach (also with minHL = 3 and minhel = 2).

Figure 5: Comparison of the (areas under) ROC curves obtained for our tRNA database (computed by
10-fold cross-validation procedures, using sample size 1000). For each considered sampling variant, the
corresponding ROC curves are shown for prediction principle MEA structure (figure on the left) and
centroid (figure on the right), respectively.
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(a) PF approach (with parameter maxBL = 30).
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(b) SCFG approach (with the most realistic parameter combination minHL = 3 and minhel = 2).
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(c) Length-dependent SCFG approach (also with minHL = 3 and minhel = 2).

Figure 6: Comparison of the (areas under) ROC curves obtained for our 5SrRNA database (computed
by 10-fold cross-validation procedures, using sample size 1000). For each considered sampling variant,
the corresponding ROC curves are shown for prediction principle MEA structure (figure on the left) and
centroid (figure on the right), respectively.

38



0.2 0.4 0.6 0.8 1.0
Specificity

0.2

0.4

0.6

0.8

1.0

Sensitivity

0.2 0.4 0.6 0.8 1.0
Specificity

0.2

0.4

0.6

0.8

1.0

Sensitivity

(a) PF approach (with parameter maxBL = 30).

0.2 0.4 0.6 0.8 1.0
Specificity

0.2

0.4

0.6

0.8

1.0

Sensitivity

0.2 0.4 0.6 0.8 1.0
Specificity

0.2

0.4

0.6

0.8

1.0

Sensitivity

(b) SCFG approach (with the most realistic parameter combination minHL = 3 and minhel = 2).
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(c) Length-dependent SCFG approach (also with minHL = 3 and minhel = 2).

Figure 7: Comparison of the (areas under) ROC curves obtained for the mixed S-151Rfam database
(computed by two-fold cross-validation procedures, using the same folds as in [DWB06] and sample size
1000). For each considered sampling variant, the corresponding ROC curves are shown for prediction
principle MEA structure (figure on the left) and centroid (figure on the right), respectively.
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