
Department of Computer Science
Algorithms & Complexity Group

Issue Date: 06.05.2014
Version: 2014-05-19 10:24

Exercise Sheet 2 for
Computational Biology (Part 2), SS 14

Hand In: Until Tuesday, 20.05.2014, 10:00 am, email to wild@cs... or in lecture.

Exercise 4 – again 4 points

We consider the data structure from the lecture for efficiently solving the lce-problem.
Recall: It is based on a compact suffix tree and uses binary numbers in additional node
labels.
Find necessary and sufficient conditions for a node u being a predecessor of node v. The
condition may only involve the binary numbers i and j that u respectively v are labelled
with.
Hint: The function h may be useful for that, where h(k) is the position (counted from
the right end) of the least significant 1 in the binary representation of k.
For example h(8) = h(10002) = 4 and h(5) = h(1012) = 1.

Problem 5 2 + 3 + 5 points

In this exercise, we consider algorithms for fuzzy string matching, where we would like
to find all occurrences of a pattern P ∈ Σm in a text T ∈ Σn (n > m), but we do not
require to have an exact match. There are two variants of the problem.
The k-Mismatch Inexact String Matching Problem consists in finding all occurrences
of P in T with up to k mismatches, i. e., formally to find all positions i in the text with∣∣∣{j ∈ [1..m] : Pj 6= Ti+j−1

}∣∣∣ ≤ k .

A generalization is the so-called k-Difference Inexact String Matching Problem: There,
a subword Ti,j of T is considered an occurrence of search string P iff Ti,j and P have
edit distance1 ≤ k.
To solve these problems, an algorithm is expected to return the set of all indices i, such
that there is a j with Ti,j ≈ P (with the appropriate meaning of approximate matches).

1Find a definition of edit distance on page 66 of the lecture notes (last paragraph above “Globale
Alignments”).



Exercise Sheet 2 Computational Biology (Part 2)

a) Design a data structure based on compact suffix trees with which we can compute
the longest common extensions of two positions in two words in constant time (as
done for two positions in the same word in the lecture).

Formally, we define for two words u ∈ Σn and v ∈ Σm:

lce(i, j) := ui,i+`max where `max := max{` ≥ 0 : ui,i+` = vj,j+`}

Hint: Read/Review the section on the subword problem for a set of texts, page 59f
in the lecture notes.

b) Give an efficient algorithm for solving the k-mismatch inexact string matching
problem and analyze its running time.

The algorithm only needs to be efficient for k � m.

Hint: Use lce-queries (and the datastructure form a) to efficiently answer them).

c) Design an efficient algorithm for the k-difference inexact string matching problem
and determine its running time.

Hint: Use dynamic programming.

Problem 6 3 + 2 points

In the lecture, we considered an algorithm to compute all tandom repeats.

Formally, “all tandom repeats of T” means the following set

R =
{
(i, `) : Ti,i+`−1 = Ti+`,i+2`−1

}
.

a) Describe a method based on this algorithm to compute all triple repeats, i. e. all
subwords of shape xxx in a text T .

b) Generalize your method to higher order repeats, i. e. subwords of the form xk for
arbitrary k ≥ 2.

2 / 2


	Exercise 4 – again
	Problem 5
	Problem 6

