Exercise Sheet 3 for Algorithm Engineering, SS 14

Hand In: Until Monday, 12.05.2014, 10:00 am, email to wild@cs. . . or in lecture.

Problem 5

We consider randomized skiplists with unbounded height of the pointer towers. Prove that for r the maximal height actually occuring holds

$$
\operatorname{Pr}\left[r>\alpha \log _{2} n\right] \leq \frac{1}{n^{\alpha-1}}
$$

Problem 6

Let X be a binomially distributed random variable with parameter p and size n.
a) Find a closed form of the probability generating function $P(z)$ for X.
b) Using the probability generating function determine expectation and variance of X.

Problem 7

Compute a closed form representation of the series $\left(a_{n}\right)_{n \in \mathbb{N}}$ defined by

$$
\begin{aligned}
& a_{0}=1 \\
& a_{n}=-2 a_{n-1}+n+3, \quad \text { for } n \geq 1
\end{aligned}
$$

using generating functions.
Hint: Start by transforming the recurrence equation for a_{n} into a functional equation for the ordinary generating function $A(z)$ for $\left(a_{n}\right)_{n \in \mathbb{N}}$. Then solve this functional equation to get a closed form for $A(z)$ and try to use known series formulas to obtain $\left[z^{n}\right] A(z)$ from it; computing the partial fraction decomposition of $A(z)$ is a very helpful intermediate step in doing so. A comprehensive collection of helpful formulas is given on the Theoretical Computer Science Cheat Sheet: http://www.tug.org/texshowcase/cheat.pdf.

