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Abstract

In this paper we introduce a class of extended binary trees that re-
sembles all possible tree-structures of binary tries. Assuming a uniform
distribution of those trees we prove that for o being the number of in-
ternal nodes the average stack-size is given by \/%ﬂa. Since this result
is quite similar to that for ordinary extended binary trees an attempt to
find an explanation for that similarity using a quantitative level is made.
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1 Introduction

In the present paper we want to analyze the average stack-size of a class of
generalized extended binary trees. Those trees result from ordinary extended
binary trees by coloring their leaves in such a way that (under an appropriate
interpretation of the different colors) all possible tree-structures of binary tries
are resembled.

Given any binary tree! T, the stack-size s(T') of T is given by

(T) = 1 : T is either a leaf or empty
)= max(s(T.l),s(T.r) +1) : else

where Tl (resp. T.r) denotes the left (resp. right) subtree of T'. Like the
height of a tree or the Horton-Strahler number, the stack-size is related to the
recursion-depth needed to traverse the tree. When a preorder-traversal (see e.g.
[Knu68]) is implemented by a recursive procedure the height of the traversed tree
equals the number of stack-cells which are needed to store the return-addresses
of the recursive procedure calls. By applying a technique known as end recursion
removal (see [Sed88]) it is possible to optimize the space requirement. Then the
stack-size of the tree describes the amount of stack space needed. The stack-
size of a tree is also related to the evaluation of arithmetic expressions. If an
expression is represented by its syntax tree (a binary tree where each internal
node corresponds to an operator and each leaf represents an operand) then
the stack-size of this tree equals the number of cells that are needed to store

IFor the definition of s, T' can either be an extended binary tree or a binary trie.



Figure 1: An example for a set of keys K, the resulting trie and the correspond-
ing generalized extended binary tree.

intermediate results in order to evaluate the expression using a simple traversal
strategy (see e.g. [Kem84] for details). From a pure combinatorial point of view
the stack-size determines the height of the tree when only right edges contribute.
Sometimes it is therefore also called right-height of the tree?. However, we prefer
to use the notion stack-size in order to stress the relation to computer science.

A trie is a binary tree which is used to store the set of keys K = {ky,...,kp}
in the following manner: Each key k;, considered as a string of 0’s and 1’s due
to its binary representation, defines a path in the binary tree (0 indicates a left
turn and 1 a right turn); the trie defined by ki, ..., k, is the smallest binary
tree T for which the paths truncated at the leaves of T' are all pairwise different.
Thus each leaf of T' stores exactly one of the keys k;, 1 <14 < n. Note that it is
not necessary that 7" is an extended binary tree. T might have internal nodes
with only one successor. However, the stack-size s(T') remains unchanged when
we make T an extended binary tree.

Here we want to look at the combinatorics of binary tries by regarding the
tree-structures that can be generated by the trie algorithm. More detailed, we
want to study the stack-size of those tree-structures. Let a generalized extended
binary tree be an extended binary tree with colored leaves. Leaves are colored
black (represented as W) or white (represented as O) such that each black leaf
is the brother of an internal node. If we now assume a white leaf to store a key
and a black leaf to represent a NIL-pointer, the class of generalized extended
binary trees resembles all possible tree-structures of binary tries, see Figure
1 as an example. Note that by definition it is impossible that two leaves B
belong to the same father or that a leaf O is the brother of a leaf B since this
would correspond to a subtrie storing no key at all or to a key that could be
stored on a lower level of the trie, respectively. Both situations are avoided by
the trie algorithm. Even if it is unnatural for the data structure trie we will
assume in the sequel that all generalized extended binary trees with the same
number of internal nodes are equally likely. The same is assumed for ordinary
extended binary trees. As usual, [z"]f(z) is used to represent the coeflicient at
z" in the Taylor expansion of f(z) at = 0. Just for the sake of simplicity a
generalized extended binary tree with « internal nodes will be called a-trie. In
order emphasize the combinatorial nature of our model the name C-tries will be
used to denote the class of all generalized extended binary trees. An ordinary

2Note that some authors consider the opposite case where the left son instead of the right
one contributes. In that case we talk about the left-height. However, because of symmetry,
such a modification of the definition would not affect our results.



Figure 2: The construction of an extended binary tree. {00, M} represent a leaf
that might be a NIL-pointer within a corresponding a-trie.

extended binary tree will be called extended binary tree.

2 The results

Basics

Let T be an a-trie and let T' denote the extended binary tree which is deduced
from T by changing each leaf B into 0. Then the stack-size of 7" is equal to s(T').
Let n(T") denote the number of different a-tries 7' which are all transformed
into the same extended binary tree 7", and assume a constant behavior of n(7")
over the set of extended binary trees. In that case we could deduce the solution
to our problem from the well studied stack-size of extended binary trees. Thus,
before we start with complicated computations for the stack-size itself it makes
sense to examine n(7") in detail.

In order to analyze n we set up the ordinary generating function B(z,w) for the
extended binary trees where each internal node is marked by the variable z and
each leaf that might either be O or B within a corresponding a-trie is marked
by w. Since an extended binary tree is constructed symbolically as shown in
Figure 2, B(z,w) fulfills the functional equation B(z,w) = z + 2zwB(z,w) +
zB(z,w)?. Thus we find

1 =2zw — V1 — daw + 42°w? — 422

B(x,w) 5

To determine the average number of leaves that might either be white or black
we have to take the partial derivative with respect to w and set w equal to 1
afterwards. We find

\/1—4x+2a?—1_ 1 _ 2 _
V1—idz CV1—4z J1—4z

We could use the binomial theorem to get an explicit representation of the
coefficient [2°]-2 B(z,w)|w=1 but it is also quite simple to get an asymptotic
equivalent by applying the transfer lemmata of [F1090] (all we need is the fact
that [2"](1 — 2)7 ~ n=?7!1/T(—v) ). We find that the coefficient in question
behaves like

1.

B2, w)|w=1 = -

ow

1a3—142
2 F(%) ’

o — 00.



To get the average number of appropriate leaves we have to divide this quantity
by the number of extended binary trees with « internal nodes. We get %a as a
result. To obtain further knowledge on n we now determine the related variance.
Thus we compute aa—;B(ar,wﬂw:l, use the transfer lemmata to estimate its
coefficients and divide by the number of extended binary trees of size a to get
the second factorial moment %aQ. This, together with the expected value, can
be used to compute the variance. Again, we find %a. Since n(T") is equal to
2V where v is the number of leaves of T' that might be a O or a B within a
corresponding a-trie, n cannot have a constant behavior for all trees of size a.
As a consequence, the stack-size of C-tries cannot be deduced from the extended
binary trees in that obvious way. Thus a detailed analysis is required.

A detailed analysis

Let us start this section with the observation that we have to consider the num-
ber of internal nodes of an a-trie when analyzing the average stack-size. Even if
a specification of the number of white leaves would have a closer connection to
the data structure trie and to the notion of size usually used there, we are faced
with the situation that there are infinitely many C-tries with a fixed number of
white leaves and a limited stack-size.

Later in this section we will need the number of C-tries with « internal nodes.
Therefore this number is quantified first.

Lemma 1 Let 6, denote Kronecker’s delta. The number |T,| of C-tries with
a internal nodes is given by

1/2n -2 n
T.| = - 22n—a—1 -3 atl-n _ S,
1Tl Zn(n—l)(a-{-l—n) (=3) 0

n>1

Proof: Let z mark an internal node. The construction process of an a-trie is
shown in Figure 2. But here a leaf B has to be interpreted as a second possibility
for building an a-trie. Thus, for T'(z) the ordinary generating function of the
C-tries with at least one internal node, Figure 2 translates into T'(z) = = +
42T (x) + 2T?%(z). Therefore T'(z) = 1=42=v 12;8“'12””2 holds. There is only one
C-trie with no internal nodes and we have to add 1 in order to take this tree
into account. In that way we find

_1-22—+1-8z+ 1222
- 2x ’

T(x) (1)

We conclude by expanding T'(x). m|

We continue our investigations by deriving the ordinary generating function
Ap(x) of C-tries that have a stack-size less than k+1. If we quantify the number



Figure 3:
All possible decompositions of an a-trie with 3 white leaves and a stack-
size of at most . The number inside the triangle corresponds to the
number of white leaves it has to possess, the number below a triangle
determines the stack-size of the subtree represented by it.

of white leaves in a (sub)trie, it is easy to distinguish between the different types
of leaves O and M. In this setting, an a-trie with 8 white leaves and a stack-size
of at most k can be decomposed into the cases of Figure 3. Let L; ;(z) denote
the ordinary generating function of C-tries with j white leaves and a stack-size
of at most i. Then those cases translate into the following set of equations:

Li71($) = 1, ’L Z 1,

Ll,j(x) = 5]',17 .7 2 ]-7

Lij(@) = aLij(@) +zLivj@+z Y Lig (x)Li1,5(@)
B1+B2=i
B1-B2#0

= |zLiv;@+z Y, Lig@Li1s@) | (@1-—2)"
B1+B2=j
B1:B2#0
To solve this system of equations we introduce the bivariate generating function
Ai(z,w) := 0 L; j(z)wl. We find A (z,w) = w and for i > 2

w+ A (z,w) — £
Ai(z,w) = 11—IﬁAfl(l«)’ w)l z
Now Ay (x,1) = Ai(z) holds and thus
Ai(z) = 1
Ap@) = -1+ sr =2

—1+z+zh; 1(2)

Therefore, Ay (x) is the k-th approximant of a continued fraction of the pattern
Ap(z) = —l+m, Aj(x) = c3 (in our case ¢; = 3z —2, ¢ = —1+z and
c3 = 1 holds). This suggests to express the generating function as a quotient, of
polynomials X (z) and Y (z) with

X (x) — 14 ¢ _ (c1 —2)Yi1(z) — 2 Xp—1 (2)
Vi (x) e +w§::711((j)) Y1 (2) + 2 X4 ()



Xi(z) = c3 and Yi(x) = 1. We translate this representation into the following
equations of matrices

(ve) = (%)
() = (2 0= ) G k22

Now (2) is solved by introducing the generating function F(q) = 3,5, (3»(*))¢"
which has the closed form representation

g(—c3+qeacz—qeitgez) )

_ —1+qco—qa+q?zcr
F(q) = < —q(qzcstqr+1)

—14qca—qr+q3zcr

To determine Ay (z) = [¢*]F(q) we compute the partial fraction decomposition
of both entries of the above vector with respect to ¢g. Let p1 (z) and p2(z) denote
the two roots of —1 + qcz — gz + ¢?2zc; = 0 with respect to ¢. Then we find

q(—c3 + qezez — qer +qea) _ A n B n C2C3 — C1 + C2
—1+gqe: — gz + ¢*wey pi(z) —q  p2(z) —q xcy
and _ _
—q(qres +qr+1) A N B gt
—l+gc; —qr+¢*zer pi(z)—q  pax)—q  cl
for
4 - c1(x + c3x — c2) + ca(es + 1) (ea — )
B 2c3x?
N —ca(ez + 1) (ca — )% + 2262 + c1(c3 — caw(4 + 3¢3) + (3 + 1)2?)
2c2r20 ’
B - c1(x + c3x — ¢2) + ca(ez + 1) (e2 — x)
B 2cix?
+02(03 + 1) (c2 — 2)% — 2z¢} — c1(c3 — cox(4 + 3¢3) + (c3 + 1)2?)

2ciz20

oG- (c3 +1)(c2 — ) N (3 + 1)(ca — )% + c1(—co + (3 + 2¢3)x)
B 2zc? 2zcio

and

oG~ (c3 + 1)(c2 — ) N ci(ea — (3 +2¢3)x) — (e3 + 1)(ca — z)?
2zc? 2zc30 '




Here, o is a short cut for \/ ¢2 — 2cow + 2% + 4zcy. Applying the binomial the-
orem gives us [¢"] Analogously we derive the other coeffi-

A A
pi(@)—a = pFD(gy”
cients. This gives us the following representation of the generating function in
question:

Xi(x) _ Aps™ (x) + Bpi ™ (x)
Vi(@) ~ AT (@) + Bpf T (a)

Now, for k := 2z — 322, pi(z) = V11r @;4" and po(z) = 1=l V;;“ holds.
Introducing the substitutions u := (1 —€)/(1 + €) with € := /1 —4x and

Ap(z) =

Sk(u) == 11—52;1 (1 + u), the application of numerous algebraic manipulations
finally yields
1— S (u)
Ap(z) = —————. 3
#() 1 — 225k (u) )

We now have to determine [2*] A (z). Therefore we expand (3) to

(1= 2Sk(u) Y _(22)'Sk(u) =Y 2" Sh(u) = Y 22" SjF (u).
i>0 i>0 i>0
Now for k = z, Si(u) is the well-known generating function of those extended

binary trees that have a stack-size less than k. Thus, it is possible to use an old
result due to R. Kemp which gives a representation for the i-th power of S (u):

Lemma 2 ([Kem80]) Let
k

Si(z) : 1—u

with u = (1 — /1 —4x)/(1 + /1 — 4x) be the generating function of those ex-

tended binary trees that have a stack-size of at most k. Then for i > 1

@ = T sEr () ()

n>0  A>0h>0

X Kn —Q(Z . ;)_Al— kh) N (n - (k2i Jlr)i_—lkh - 1)}

holds. i
Define ¢(i,k,n) = ¥ 3 (= () (7)) [t i)~ ) |
A>01>0
Then
Z 20’ Si(u) = Z 20! [ Z k" p(i, k,n) + 6130}
i>0 i>0 n>0

=22 > (Z) 2" (=3) T o (i, K,y m) + b0,

i>0 n>0 m>0



and

2Lt (y) = 20ttt K"p(i+1,k,n)
k

i>0 i>0 n>0

= Z Z Z (Z) gnomti(_gymgitntmtl o4 1k on).

i>0 n>0 m>0

Now we can pick the coefficient at % to quantify the number of C-tries with «
internal nodes and a stack-size of at most k. We find that [z%] A, (x) is given by
1 for @« = 0 and by

X (L) et k)

i>0 n>0

n i— o a—i—n— .
T () e i L

i>0 n>0

for a > 1. Applying some fundamental simplifications lead to the following
lemma.:

Lemma 3 The number Sy o of C-tries with a internal nodes and a stack-size
<kisl fora=0 and

1 n n+2i—« a—i—n -
D35 31 WIS
i>0 n>0
for a > 1. |

To quantify the average stack-size of C-tries we have to determine

ITal™ > E(Ska —Sk-1.0) =(@+1) = |Ta| ™" > Ska-

1<k<a+1 1<k<a

For this purpose we introduce ¢(n,i,\,a) == > > (’:ﬁ'l) (nf(ka;_)i)\_flklfa)'
1<k<a [>0
Then >, o<, Sk, reads

% Z(a . n) gni2ize(_gye—i=n KA <;> [6(n,1,1,0) = $(n, i, A, 1)].

i>0 A>0
n>0 =

A simple rearrangement of the terms in the sum ¢(n,i, A, a) shows, that

d(n,i,\,a) = (1 + 8y o(a — 1)) <2n +i— 1)

n—a



2n+i1 -1 i—1+d—A
+Z<n—v—a> Z ( i—1 >
v>1 d|(v+A)
Thus (a +1) = |Ta| ™" X, c4<a Sk.a is given by
1
(a+1)— §|Ta|‘1(@§}) +02 +0® +0W)

with

@(al) — Z Z <a _Z’_ n) 22n+2i—a(_3)a—i—n

i>0 n>0

) -0

@&2) _ Z Z < L n) 22n+2i—a(_3)a—i—n

i>0 n>0
m+i—-1 2n+i-1 i—1+d
[ >—(n-v-1)}§( )
3) _ 2n+2i— a a i—n
or = ZZQ_Z_ >2
i>0 n>0
2n+i—1 n+i-1
@) -]
A>1
and
(4) _ 2n+2i— a oz i—n _1\A i
%’ = ZZ(a—z—n>2 Z( 2 <)\>
i>0 n>0 A>1
2n+i—1 2n+i—1 i—1+d—-A
XZ[( n—uv >_<n—v—1> Z ( i—1 >
v>1 d|(v+A)
Using Lemma 1 we have o) = 2a|T,| and oY = —2|T,|. Hence the average

stack-size can be written as

ST (e ()

i>0 n>0 A>0

2n+i1—-1 2n+i1—-1 i—14+d—A
|-Gl 2 ()
v>1 d|(v+A)

Decreasing the index v by A the innermost sum can be split into a difference of
two sums. We obtain the representation 2 + h(al) — h(f) with

A g (g ()

i>0 n>0 A>0



2n+i—1 2 +i—1 i—1+d-A
(0 - GERL)IE 0T,

d|v
h(a2) — 1|Ta|—1 Z Z ( n >22n+2i—a(_3)a—i—n Z(_l)A-H (’L>
2 isonso \X TR A>0 A
2n+1 -1 2n+i—-1 i—1+d—-A
<2 (G ) - GRS,
1<v<A d|v

Now regard the last sum. The term

(Y

d|v

is zero for d < A. Since d < v < A, the sum h(f) collapses and we get h(f) =1.
This gives the following theorem:

Theorem 1 The average stack-size of C-tries with « internal nodes is explicitly
given by

(g ()

i>0 n>0 A>0
2n+i—1 2n+i—1 i—1+d—-A
X — .
Z[(n—v+)\> (n—v—l—A—l)]Z( i—1 )
v>1 d|v
Here, a representation for |T,| is stated in Lemma 1. O

Asymptotic behavior

To see how the average stack-size behaves it is necessary to derive some asymp-
totic results since the representation in Theorem 1 does not give us sufficient
information. To do this, we could try to estimate the exact solution of the last
section. For that reason we refer to [Kem80] where it was necessary to estimate
the sum

i 2 () Z () - )]

0<A<r m>1
(4)

d+r—-X2-1
()
d|m

10



for T}, , the number of planted plane trees with a root of degree r and n nodes.
Under the assumption of r being constant, a demanding computation led to the
asymptotic
- %r _ % + O(In(n) /n®5 %),

for some ¢ > 0. Unfortunately, since we have to sum over different instances of
(4)3 this assumption cannot be guaranteed in our case. Further it is not obvious
how to get rid of it. Thus, neither the results of [Kem80] nor the idea of the
computation can be used. Therefore, we return to (3) and consider the sum
T(x)+ > > (T(x) — Ap(x)) where T'(z) is given in (1). This sum resembles in
terms of generating functions the sum of £ times the number of C-tries T' with
s(T) = k taken over all possible k. Using our generating functions we find the

representation
V1-—4k k s(z)\*
)+ Y 0 Y (15
k>1 dlk
where
(z) = 1—+1—-4k
(I,
s(z) = kV1 — 4k,
and

h(r) = =2(—1+2z)(—1+4 32)(—1+ 62) + V1 — 4k(2 — Tk).

Returning to our substitution u, we get the somehow simplified form

v+ V1—u+u+ 301 —u)
——— 14+u—V1-u+u?
=:f1(u) ~ ~- -
=:f2(u)

qukz 1+2(u—1)(—1+u+\/1—u+u2

u
k>1 dk - -

= fa (w)

which, by means of the binomial theorem and the well known relation of Stirling
numbers of the first kind Slgv) and binomial coefficients (e.g. [Kem84], BS),

T 1
_ = (v) v
<7~> — Z Spat,
0<v<r
can be transformed into

Fulw) + o) Y03 80 fi) Y wton ()

r>00>0 E>1

3Not really (4), but something quite similar to it.

11



Here, o, (k) is the sum of the v-th powers of the positive divisors of k. Now,
setting u := exp(—t) and applying the well known identity

1 c+ioo
exp(—tj) = —/ D(s)j °t °ds

2mi c—1i00

for some ¢ in the fundamental strip of the Mellin transform of exp(—tj) and
I'(s) the complete gamma function, it is possible to express the sum over the
divisor function o, (k) by means of the Riemann Zeta function (see [Apo76] for
details). We obtain

c+ioco
e+ hEe) T Y S [ T - s,
v>0r>0 €10

It is standard to expand the generating function about its dominant singularity
(which is 2 = § in our case) and to use O-transfer (see [F1090]) to derive an

asymptotic for the coefficients. Thus, we consider ¢ = 0 and use residue calculus
to evaluate the integral. For v = 0 the sum of the residues is given by

_ 11 1
t~(y — log(t)) + yik i mﬁ’ +O(th).

The sum fo(e™) >, ~q %Sﬁo) f3(e™H)" possesses the expansion

74 29 . 6
L4 =t — ——¢ t%).
3+8 610 + O(t”)

For v = 1, we find

1, ., 1., 1
L1
6" ot T O

for the integral and

3
—6t2 — ¢t — —¢8 8
6 160 + O(t°)

for the leading factor. For v > 1, we only have contributions of the order O(#*).
As we will see those can be neglected. Further we have

3 3, 9 7
-ty _ Y _ Y Y42 43 4
fi(e )_2 2t+8t 16t + O(t).

Thus, we find the following expansion about ¢ = 0:

9 9 4 4
3log(t) + 4t+ 32t + O(t).

Now we have to extract the coefficients. Since t = —log(u) = —log(375),
conclude that ¢ ~ 2(1 — 4k)2. Thus [z*](~3log(t)) ~ —3[z*]log(2v/6(1 —

12



| « || exact, | asymptotic | exact/asymptotic |
4 3.473684211 | 3.216607528 1.079921682
8 5.095040934 | 4.827460250 1.055428874
12 6.402595151 | 6.144884822 1.041939001
16 7.521408593 | 7.276965056 1.033591413
20 8.514998606 | 8.283129563 1.027992927
24 9.417908737 | 9.197223110 1.023994811
28 10.25124129 | 10.04038524 1.021000793
32 11.02901804 | 10.82679550 1.018677968
36 11.76101957 | 11.56648925 1.016818441
40 12.45457331 | 12.26686849 1.015301772
100 || 20.355424941 | 20.22303764 1.006546361
200 || 29.305882012 | 29.20730125 1.003380000
300 || 36.186729411 | 36.10442411 1.002280000

Table 1: Some exact and asymptotic values of the average stack-size.

61)3) = %% By the application of transfer-lemmata we can determine the
contribution of the other terms. We find in total, that for C-tries with « internal

nodes our sum behaves as

1 1 3 3
36~ 4 9 <2> Z q73716 4 9 (2) 2 q3716
2a ' 2\3) T(=% "2\3) T(=% "
This quantity has to be divided by the asymptotical number of C-tries of size
a. Applying an O-transfer to (1) we find that

EPY L L
o 2 V1

This gives us the following theorem:

Theorem 2 Under the uniform model the average stack-size of a C-trie with «
internal nodes is asymptotically

O

In Table 1 we find some exact and asymptotic values of the above average
together with their quotient.

13



If we compare the leading term of this average value with the average stack-size
of ordinary extended binary trees (which is given by /7ra ([BKR72], [Kem84],

Theorem 5.3)) the only difference is the factor \/g Even if it seems to be

obvious that the coloring of leaves (i.e. the change of ordinary extended binary
trees into generalized ones which model the possible structures of tries) should
not severely affect the average stack-size, the similar behavior of both classes of
trees asks for a detailed investigation. A first attempt for that can be found in
the following section.

3 Essay of explanation

In this section we try to find a relation between extended binary trees and our
generalized variant which explains their similar behavior concerning the average

stack-size. In detail we try to find an explanation for the factor \/g . If we could

find such a relation it might make the analysis of the last section superfluous
and could enable us to derive our result from [BKR72] or [Kem84], Theorem
5.3. Starting point of our consideration is the structural equivalence of both
classes of trees which only differ in the following fact: Within the class of C-
tries (generalized extended binary trees) some of the leaves O might be B as
well. This implies that for each extended binary tree there might be more than
one a-trie of the same structure. All those a-tries differ in the color of their
leaves only. At the beginning of Section 2 we have computed the average number
of leaves of an extended binary tree that might be a B within an a-trie. The
result told us that this number is of large variation and thus a direct derivation
of the average stack-size of C-tries from that of extended binary trees seemed
impossible. But what happens if there is no variation of this number for all trees
of the same stack-size. In that case it might be possible to derive the average
stack-size of C-tries from that of extended binary trees or at least to explain the

factor \/g .

Let B denote the set of all extended binary trees and let [(T') represent the
number of leaves O of T' € B that might be a B within an a-trie of Ts structure.
To compute the average behavior of [(T') we derive the generating function
Bi(z,w) = Y rep, o)< @7 w'™), where |T| is the number of internal nodes
of T. For By(z,w) we have to distinguish the cases shown in Figure 4. Note
that {O, @} is used to picture the case of a leaf O that might be a B as well.
The cases of Figure 4 translate into the equations

Bi(z,w) = 1,
Br(z,w) = 1+ x+ zw(B(z,w)—1)+ zw(B_1(z,w) —1)
+z(By(z,w) — 1)(B—1(z,w) — 1), k > 2.
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Figure 4: The construction of an extended binary tree with a stack-size < k.
The label on top of the root of each tree specifies the stack-size of it. Each
triangle represents a subtree with at least one internal node, the number below
a triangle determines its stack-size.

Thus, for k£ > 2, we find
1+ 22 + zw(Bg—1 (z,w) — 2) — xBg—1(x, w)
1—2w—z(Bg_1(z,w) — 1)
—w— 1z +wlz
—1—z 4wz + zBy_(z,w)’

By (z,w) =

= 1l-w+

Let Sk(x) = Yorep, s(r)<k z!T! be the generating function of Lemma 2. Then
By (z,1) = Sk(z) holds. We introduce By (z) := %Bk(w,wﬂwzl and use the
identity Si(z) = 1/(1 — 2Sk—1(x)) (see [BKRT72]) which gives us

Bl (CU) = 0

Be(z) = —x(—(1422)Sp_1(z) +2S; |(2) + 1 — Bp_1(x))S; ().

It is quite easy to solve this linear recurrence. We find

k=l p—itt S+1( z)(—(1+22)S;(z )+£IZS]2(CU)+1)-

(z) =~ leSl2+1 Z J

j=1 Sl+1( )

To simplify this solution we first have a look at the product

S T - - T
st = I [ e v

2

which is telescopic and collapses to

4t [ (1+vI—d2)? — (1 — vI—d2)? r
L+ V1= g2 — (1= VI—dn)+i]

This gives the following representation of By (z):
Be(z) = —(4z)* 1+ V1 —4x)kt — (1 — V1 — dx)k ]2
k—1
x 3 a4 4 YT = d2)H — (1 - VT = da) )
j=1

x(=(1422)S;(z) + xS; (z) + 1).
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Inserting the closed form representation for Si(z) and performing some algebraic
simplifications yields

Buw) = 4t (VT a)™ -Vt T )

x (1 —k — 4z + 2kz + 2072 (1 — 42) 73

2

(=5 - (=5 ])

From [Knu68], p. 93, we know that

(1 + J;—W)”“_ <1 _ m>2’“] _ 2’“2‘:1 <2k i 1) o

1
1—dx)"3
(1—dz) 2 5 ;

i=0

~

-~

=:pax (2)

holds. Thus only the denominator of (5) can have singularities. From [BKR72]
we know that the equation

(1+vi—d)™ —(1-vicam)" =0

possesses the solutions z; = [4cos®(jm/(k + 1))] %, 1 < j < &L, The solution
of smallest modulus is given by z; = [4cos?(r/(k + 1))]"!. Furthermore, for
z = [4cos*(0)]7", pr(z) is given by

sin(k©)/(sin(0©)(2 cos(©))*1).
Thus

Bi([4cos?(©)]7") = [4cos’(©)]7%(1 — k — cos™%(O) + k[2cos*(O)] "
+2[4 cos?(0)]*2[sin(2kO)/(sin(©)(2 cos(©))2* 1))
x sin?(0©)(2 cos(0))* sin 2 ((k + 1)0)(1 — cos~2(0)) ™!

holds. In order to apply Darboux’s Theorem we regard
cos’(m/(k + 1)\ (| _ cos’(w/(k + 1)\ 21
1—-—— 1—-—" 4 ).
< cos?(0) ) ( cos?(0) ) Bi([4cos"(©)]7)

=gk ([4 cos?(©)] 1)

By Darboux’s Theorem (e.g. see [Kem84], Theorem 4.12) we know that the
coefficient [2*]Bg(z) is asymptotically given by

a4 cos® (m/(k + 1))]*gx ([4 cos®(r/ (k + 1)] 7).
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Figure 5: The convergence of Ag(a) to Ax(a) — Ag—1 ().

To determine g ([4 cos?(7/(k + 1))]~*) we consider the limit

1- 4 2 -1
@le/rgm)gk([ cos(0)]7)

which evaluates to

2 2
— 1))(2 -1 2 1))).
Grr1)? an (m/(k+1))(2 + (k — 1) cos(2m/(k + 1))
Thus we have the following lemma:

Lemma 4 Let T be an extended binary tree and let (T) denote the number
of leaves of T that might be black within an a-trie of T’s structure. Then

ETGB,s(T)gk, T|=a I(T) is asymptotically given by

Ai(a):=afdcos®(n/(k+1))]* tan®(7/(k+1))(2+(k—1) cos(27/(k+1))),

2
(k+1)2
a — 00, k fized. a

To find the average behavior, this number must be divided by the number 7 («)
of trees T € B with s(T) < k and |T| = a. It is well known that this number
behaves as [BKR72]

4a+1
kE+1

tan?(r/(k + 1)) cos?®*2(n/(k + 1)) (6)

for a = 0o and fixed k. Thus, we find as a result

Theorem 3 For large o and fized k, the average number of leaves of an ex-
tended binary tree T with s(T) < k and |T| = « that could be black within an
a-trie of T'’s structure is asymptotically given by

2+ (k—1)cos(2r/(k + 1))
2(k + 1) cos2(m/(k + 1))

Remarks:

e Since with respect to k the essential singularity of By (z) is strictly mono-
tonically decreasing, the asymptotic of Theorem 3 also holds for s(T") = k.

e An asymptotic for the case s(T') = k of higher precision is given by
(Ag(a) = Ap—1(@))/(Te (@) — Tr—1()), but as you can see in Table 2
the improvement is rather small.
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In Figure 5 we have illustrated the quotient (Ay(a) — Ag—1(a))/ Ak () in order
to show the rate of convergence. It is remarkable that this convergence seems to
be rather slow in contrast to the similarity of both asymptotics for the average
value.

We now determine the second factorial moment of our parameter. For that
purpose we take the second partial derivative of By (z,w) with respect to w

and set w = 1 afterwards. A lengthy computation proves that B,(f)(a:) =
2 . .
25 By, (z, w)| =1 is given by

B (z) = D(z) ' (N (z) + kNa(z) + k2N ()

for
N1(:L') =
Br3((1— )3 4 (14 )% 3) + (1 — )" 2(—a — b) — (1 +&)*2(a — b)
83
with ¢ = /1 — 4z, a = 4k2%(64(52 — 1)(1 + (z — 4)x)) and b = 4k2*(32e(-3 +
2z(11 + (z — 19)x))),

No(z) = gk (—e((1-a)* + (1 —li—j)zz: +((1=e)k = (1+e))d

with ¢ = (=3 4+ 4(z — 1)z(22 — 5)), d = (=3 + 42(7 + z(26z — 23))),
N (z) =

(1 —22)24k 12k (1 —42)(1+e)* — (1 — &)%) +e((1 — )k + (1 + &)%)
—1+4x

and

D(z) = (1 +)**" = (1 —)**1)%.

We set x = [4cos?(0)]~! within ¢ in order remove the square roots and after-
wards © = «/(k + 1) for those parts that do not get singular. We find that
B\ (z) = sin™?((k + 1)©) Ry (x) with

Ri(z) =
( 1
4sin®(27/(k + 1))
cos®(m/(k+1))(2(1—52) (1 4+ 22 —4x) + (1 — 4z — 42>+ 82%) sin® (1 /(k+1)))
+ —3
sin®(7/(k + 1))
cos® (m/(k + 1))(8x — 64z% + 9613) 2 cos? (2 / (k + 1))>
sin(r/(k + 1)) 2sin(27/(k+1)) )"

-k

To apply the theorem of Darboux we need a representation of the pattern (1 —
z[zx)"“*ga(z) for z) being the singular point and g)(z) analytic near z). For
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Lk ] o asl. | as2. | ex. |
10 4.725674713 | 4.294738942 | 8.058823529
30 14.17702414 | 14.62539900 | 15.43112546
10 50 23.62837357 | 23.88451696 | 24.64011046
70 33.07972300 | 33.26497837 | 34.00313618
100 47.25674713 | 47.38070781 | 48.10891257
20 9.816090348 | 9.638733210 | 18.02702703
40 19.63218070 | 18.98365281 | 23.59014547
20 60 29.44827105 | 22.10571473 | 32.11052278
80 39.26436140 | 40.93564480 | 41.34600893
100 49.08045174 | 50.01890270 | 50.85703475
40 19.81986873 | 19.65245893 | 29.53666026
30 60 29.72980310 | 29.41844700 | 36.08046869
80 39.63973748 | 39.09113905 | 44.35521268
100 49.54967184 | 48.53224651 | 53.31545713
40 19.89361458 | 19.80877001 | 38.01298701
40 60 29.84042188 | 29.70005855 | 41.71019744
80 39.78722917 | 39.57846751 | 48.57581765

Table 2: The rough [asl.] and the improved [as2.] asymptotical values for the
case s(T') = k together with the corresponding exact [ex.] account.

that purpose we determine

. cos?(n/(k +1))\° 1
o ) <1_ c0s2(©) ) sin®((k + 1)©)

which evaluates to
sin®(7/(k + 1))
cos?(m/(k + 1)) (k + 1)3°

Thus [ma]B,(f)(x) possesses the asymptotical representation

sin®(7/(k + 1))
cos3(m/(k +1))(k + 1)3

40’4 cos®(m/(k + 1))]® Ry ([4 cos® (m/(k +1))]71).

The application of numerous simplifications such as well known identities for
trigonometric functions gives us

(218" ) ~
402 cos?*4(n/(k + 1)) sin® (7 /(k + 1))
(k+1)3
X ((=2 4 cos(2n/(k + 1)))* — k(1 — 4cos(27/(k + 1))
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+cos(4r/(k + 1)) + k? cos®(2n / (k + 1)))
402 cos?*4(w/(k + 1)) sin®(x/(k + 1)) (2 + (k — 1) cos(27/(k + 1)))?
(k+1)3 '

To determine the second factorial moment this quantity has to be divided by
(6) which yields:

Theorem 4 For large a and fized k, the second factorial moment of the number
of leaves of an extended binary tree T with s(T') < k and |T| = « that could be
black within an a-trie of T ’s structure is asymptotically given by

5 (24 (k—1)cos(2n/(k + 1)))?
4(k + 1)2 cos*(n/(k + 1))

Note that the same arguments as those for the first moment imply the validity of
Theorem 4 also for the case s(T') = k. Thus, asymptotically the second factorial
moment, of the number of leaves in an extended binary tree of stack-size k that
might be black within a corresponding a-trie behaves like the square of the first
moment. This implies the variance being equal to the first moment and thus
not being zero. In conclusion, our attempt to explain the similar behavior of
ordinary extended binary trees and our generalized variant with respect to the
stack-size failed.

4 Concluding remarks

In this paper we have proved that within the uniform model the average stack-

size of an a-trie is asymptotically given by %Wa. This is quite similar to

the average stack-size of extended binary trees which is given by /ma. This
similarity is obviously implied by our model which just considers all possible
tree-structures of a trie as equally likely and thus leads to a generalization of
extended binary trees; the attempt to explain the similarity in detail failed.
However, further investigations are sensible. Since for the data structure trie
keys are only stored in external nodes, a result which also considers the number
of leaves would be of interest. Furthermore, the assumption of a more real-
istic probability model such as the Bernoulli- or Poisson model (see [Mah92])
could be the starting point of further observations which then would not be a
combinatorial study but an investigation of tries as a data structure.
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