Department of Computer Science Algorithms \& Complexity Group

Exercise Sheet 1 for Computational Biology (Part 2), SS 14

Hand In: Until Tuesday, 06.05.2014, 10:00 am, email to wild@cs. . . or in lecture.

Organisational Stuff

- Please hand in your solutions as teams of 2 to 3 students.
- In total, you need at least 40% of the reachable points to be allowed to take the oral exam (the sum over all sheets, not on every single sheet).
- Please make sure you have enrolled for this course in the OLAT online system. The link is on our course website http://wwwagak.cs.uni-kl.de/Vorlesung/bioinf2-14.html.

Problem 1

Consider the following Bernoulli game with players Alice and Bob: Alice chooses a word $a \in\{0,1\}^{k}$. We assume Bob knows a and then chooses $b \in\{0,1\}^{k}$ with $b \neq a$. Afterwards a random $0-1$ word $s=s_{1} s_{2} \cdots$ is generated with $\operatorname{Pr}\left[s_{i}=0\right]=\operatorname{Pr}\left[s_{i}=1\right]=\frac{1}{2}$ independently for all i. The winner is the player whose word appears first as a subword of s. We say that Bob probably wins iff

$$
\operatorname{Pr}[b \text { occurs first }]>\operatorname{Pr}[a \text { occurs first }]
$$

A word s is called A-win iff b does not appear in s and a appears exactly once in s, namely as a suffix. An A-almost-win is a word s, for which $s \cdot a$ is an A-win. We call the set of all A-almost-wins S_{a}. B-wins, B-almost-wins and the set S_{b} are defined similarly. For two sets of words X and Y, we define their concatenation as usual:

$$
X \cdot Y:=\{x \cdot y \mid x \in X \wedge y \in Y\}
$$

Furthermore for two words a and b the set $H_{a b}$ is defined by

$$
H_{a b}:=\{x \mid a=x \cdot y \text { and } y \text { is a prefix of } b \text { with } y \neq \varepsilon\}
$$

a) Let $S:=\left\{s \in\{0,1\}^{\star} \mid\right.$ neither a nor b is subword of $\left.s\right\}$. Show that

$$
S=\left(S_{a} \cdot H_{a a}\right) \cup\left(S_{b} \cdot H_{b a}\right) \text { and } S=\left(S_{b} \cdot H_{b b}\right) \cup\left(S_{a} \cdot H_{a b}\right)
$$

holds.
Hint: Note the connection between $H_{a b}$ and the sets of A / B-wins:

b) Conway's Inequality states that Bob probably wins iff

$$
P_{a a}-P_{a b}>P_{b b}-P_{b a}
$$

where $P_{a b}:=\sum_{u \in H_{a b}} 2^{-|u|}$. Prove this equivalence.
Hint: Use a).

Problem 2

Consider again the Bernoulli game from Problem 1 and prove that for $k \geq 3$, Bob can always win probably, i. e. for each a there is a b, s.t. Bob probably wins.

Hint: Use Conway's inequality.
If $a=a_{1} a_{2} \cdots a_{k}$ try using $b=? \cdot a_{1} \cdots a_{k-1}$.

Problem 3

Consider the following unfair coin: With probability p, it shows H (heads) and with probability $q:=1-p$, it shows T (tails).

What is the expected number of coin tosses until the pattern THTTH appears for the first time? Also determine the corresponding variance as a function of p.

Problem 4

Progress in lecture was slower than anticipated; therefore Problem 4 is deferred to the next exercise sheet.

We consider the data structure from the lecture for efficiently solving the lce-problem. Recall: It is based on a compact suffix tree and uses binary numbers in additional node labels.

Find necessary and sufficient conditions for a node u being a predecessor of node v. The condition may only involve the binary numbers i and j that u respectively v are labelled with.

Hint: The function h may be useful for that, where $h(k)$ is the position (counted from the right end) of the least significant 1 in the binary representation of k.
For example $h(8)=h\left(1000_{2}\right)=4$ and $h(5)=h\left(101_{2}\right)=1$.

