Investigation of the Bernoulli-Model for RNA
Secondary Structures

Markus E. Nebel
Johann Wolfgang Goethe-Universitat
Fachbereich Biologie und Informatik
Institut fiir Informatik
Frankfurt a. M.
Germany

Abstract

Within this paper we investigate the Bernoulli-model for random sec-
ondary structures of RNA molecules. Assuming that two random bases can
form a hydrogen bound with probability p we prove asymptotic equivalents
for the averaged number of hairpins and bulges, the averaged loop-length,
the expected order, the expected number of secondary structures of size n
and order k£ and further parameters all depending on p. In this way we
get an insight into the change of shape of a random structure during the
process 1 2 0. Afterwards we compare the computed parameters for ran-
dom structures in the Bernoulli model to the corresponding quantities of
real existing secondary structures of large subunit rRNA molecules found
in the database of Wuyts et al. . That’s how it becomes possible to identify
the mayor weaknesses of the Bernoulli-model for secondary structures.

1 RNA Secondary Structure

A ribonucleic acid (RNA) molecule consists of a chain of four different types of
nucleotides. Each nucleotide contains a base, a phosphate group (PO?{) and a
sugar group (ribose). The different types of nucleotides only differ by the base
involved; the chemical structure of the four choices adenine (A), cytosine (C),
guanine (G) and uracil (U) is illustrated in Figure 1. The non-planar 5 member
ribose ring connects the phosphate to the base. The chain is formed by means
of the phosphate groups; the phosphate group of one nucleotide is linked to the
ribose ring of its neighbor (see Figure 2). The specific sequence of bases along the
chain is called the primary structure of the molecule. It is usually modelled as a
string over the alphabet {A, C, G, U}. Through the creation of hydrogen bounds,
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Figure 1: The four bases adenine, cytosine, guanine and uracil (from left to right).
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Figure 2: Two nucleotides chained by a link between their phosphate groups.
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Figure 3: The hydrogen bounds between the complementary bases adenine and
uracil (top), resp. cytosine and guanine (bottom).

the complementary bases A and U (resp. C and G) form stable base pairs with
each other (see Figure 3). Additionally, there exists the weaker G-U pair, where
the bases bind in a skewed fashion. All of these are called canonical base pairs.
Other non-canonical base pairs may occur, some of which are stable. By the cre-
ation of base pairs the primary structure is folded into a stable three-dimensional
conformation called tertiary structure of the molecule. It is customary in sci-
ences to study the simplified secondary structure by focusing ones attention just
on what bases form pairs and allow the sequence to form helical regions in two
dimensions. The secondary structure plays a role in the interaction of tRNA
with proteins [14], in stabilizing mRNA and in packing RNA into virus particles.
Since experimental approaches like X-ray diffraction are quite expensive much
effort has been made to deduce the secondary structure from the knowledge of
the primary structure. One possible technique is to compute a conformation of
minimum free energy. With respect to this task the notion of order of a sec-
ondary structure has been introduced in [11]. The idea was restated rigorously
in [22] where the first formal framework for secondary structures has been intro-
duced. The working hypothesis which makes the evaluation of the free energy
E(S) of structure S feasible is that if we decompose S into disjoint substructures
Sty Say ..., S, then E(S) = e(Sy) + e(S2) + -+ - + e(S;) where e(S;) denotes the
energetic contribution of substructure S;. One possible method for an efficient
prediction of the secondary structure then is to first construct an optimal first-
order structure. Using the results from the previous pass, successively higher



order structures are computed in an iterative way. The algorithms of Waterman
[22] and Mainville [10] can be seen to work this way.

Many authors have paid attention to enumeration problems related to the com-
binatorics of RNA secondary structures. Assuming that base-pairing is possi-
ble between arbitrary pairs of nucleotides, the set of all possible structures is
modelled as a specific kind of planar graph [22]. Parameters of interest are
the number of different structures of a given size, the number of structures of
given size and order, the expected number of specific substructures but also
the systematical treatment of such problems from a mathematical point of view
[8, 13, 15, 16, 18, 20, 22, 23, 24]. A more realistic model, the so-called Bernoulli-
model, is obtained by a stochastic approach where we assume a Bernoulli distri-
bution of the bases. A parameter p is used to specify the probability that two
random bases can be paired. This model was considered for example in [6, 27].
In its final section, the article [6] presents some asymptotics for parameters like
the average number of stacks per base or the expected stacklength, all based on
the probability p.

The aim of this paper is to judge the quality of the Bernoulli-model for random
secondary structures and to detect its major weaknesses. In this way it should be
possible to find better, more realistic models which could be handled mathemat-
ically, too. For this purpose we first study the influence of the probability p on
the expected shape of a secondary structure in the Bernoulli-model. Therefore,
we will derive parameters like the expected number of specific substructures like
hairpins and bulges, the expected lengths of loops and so on, all depending on
p, so that it will be possible to conclude what a typical secondary structure of a
given size looks like. Those parameters were not determined in [6] and we will
present, a different, less classical method to derive them. Afterwards we will rate
the quality of the Bernoulli-model by comparing our results to the corresponding
parameters of real secondary structures of long subunit ribosomal RNA molecules
taken from the database of Wuyts et al.[25].

Before we start, we restate some definitions and prior results such that it becomes
possible to state precisely which problems are to be considered here.

2 Definitions and Prior Results
We will first consider the combinatorial model for the RNA secondary structure
in order to introduce all the terms needed.

Definition 1 ([20]) For X :={(,],)} and w € ¥* let |w|, for x € ¥ denote the
number of occurrences of symbol x in w. Then a word w € X" is a secondary
structure of size n if w satisfies the three following conditions:

(1) For every factorization w = u - v, |u|c > |ul).

(2) wl¢= fwl).



(3) w has no factor ().

Within this model a pair of corresponding brackets in a word w represents two
bases of the molecule which are paired. The symbol | is used to represent an
unpaired nucleotide. The words of ¥* which satisfy the conditions (1) and (2) are
known as Motzkin words, words over the alphabet {(,)} satisfying the conditions
(1) and (2) are usually called semi-Dyck words. Condition (3) takes into account
that two (with respect to the primary structure) adjacent bases cannot be paired.
Thus, condition (3) implies a minimal length for the hairpin-loops (which formally
will be defined later) of one (while a value of three would provide a realistic lower
bound). However, in that way our definition is equivalent to the graph-theoretic
definition given in [22] which makes it possible to compare our results to the
rich set of results for the combinatorial model. Using our formal framework,
Definition 2.2 of [22] reads as follows:

Definition 2 Let w be a secondary structure of size n and let w; denote the i-th
symbol of w, 1 < i < n.

(i) The subword v = w4y ... wj—_y is a (hairpin)-loop, if v € {|}* and w,w; =
() is a corresponding pair of brackets of w.

(it) The subword v = wii1 ... wj1 is a bulge, if v € {|}* and wyw; € {(,)}?
but w;w; does not represent a pair of corresponding brackets of w.

(iii) A tail is a preficv = wy ... w; resp. a suffic v =wj...w, such thatv € {|}*
and wiyq resp. wi_q is in {(,)}.

(iv) A hairpin is a subword v = w4y ---wj_q such that v contains exactly one
loop, wiy1w;—1 18 a corresponding pair of brackets of w, but wyw; is none.

(v) A ladder consists of two mazimal subwords u,v such that u = w;...w;y,
and v = Wj... Wiy, and Wiyk, Witc—k 15 a pair of corresponding brackets,
0 <k <ec. The length of a ladder is given by c + 1.

Note that multiple bulges together might form more complex substructures like
for instance interior loops or multi-loops. However, in this paper we won’t dis-
tinguish the contexts where bulges may occur.

Next we will define the order of a secondary structure already mentioned in
the first section. For w = wy ---w, a semi-Dyck word of length n, a subword
v =w; - wjiai—1 = (*)"is called pyramid of w. The pyramid v is called mazimal
if w;_1 # (or wjye; # ). We define II(w) to be the semi-Dyck word which results
from w by deleting all maximal pyramids in w.

Definition 3 Let w be a secondary structure and let a(w) denote the semi-Dyck
word which results from w by the deletion of all symbols | in w. w is said to be
of order k if k is the smallest integer such that II®*) (a(w)) = ¢ holds. Here ¢ is
the empty word and TI®) denotes the k-th iterated of II.
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Figure 4: An example of a RNA molecule of size 25 and order 2 (left). Its first base
(usually called the 5" terminus) in the chain is marked by an arrow. The hydrogen
bounds are represented as dotted lines. The corresponding representation as a
Motzkin word (middle) and the two runs of deleting maximal pyramids necessary
to erase a(w) (right). The two maximal pyramids which are deleted in the first
run are underlined within a(w).

In Figure 4 we find an example molecule together with its abstract representa-
tion as a Motzkin word and the runs performed in order to determine its order.
The secondary structure of Figure 4 possesses one bulge (6th and 7th base, subse-
quence GG) and two hairpin-loops (9th to 11th base, subsequence GUA and 16th
to 18th base, subsequence AUA). The two tails are given by the sequences AA
and C. Furthermore, it has two hairpins (8th to 12th base, subsequence AGUAU
and 13th to 21th base, subsequence CACAUAGUG). The structure has 3 ladders,
two of length 3 (3rd to 5th base, 22nd to 24th base and 13th to 15th base, 19th
to 21st base) and one of length 1 (8th and 12th base). Let us try to provide an
insight into the notion of order. If we traverse a secondary structure along its
ladders starting at its tails we may reach a point were the path has to split and
we have the choice to continue with at least two ladders. (In the example of Fig-
ure 4 this is the case when we have reached the GC-pair at positions 5 and 22).
Let us call such a point bifurcation. Then the order gives information about the
maximal nesting-depth of bifurcations within the structure considered. Therefore
it seems to be reasonable that the order should in some way be related to the
spatial structure of a RNA molecule: A molecule with a relative small number
of bases but a high order cannot stay planar, since there is not enough room for
all its nested substructures; those need to make room for each other by leaving
the plane. Viennot [20] was the first to notice that there is a close connection



between the order of secondary structures and the Horton-Strahler number of bi-
nary trees. For a binary tree T" we recursively define its Horton-Strahler number
hs(T) in the following way:

0 : if T is either a leaf or empty
hs(T):= ¢ hs(T.1)+1 : if hs(T.l) = hs(T.r)
max(hs(T.l),hs(T.r)) : otherwise

Here, T.l (resp. T.r) denotes the left (resp. right) subtree of T. Thus, as for
the order, the branching-points (internal nodes) of the tree are responsible for
a growth of the parameter in the case where both its subtrees possess the same
Horton-Strahler number. This is exactly the same for the order of a secondary
structure. When we delete a secondary structure step by step according to Defi-
nition 3, a bifurcation is responsible for a (k+1)st iteration whenever at least two
of its substructures need k iterations to be deleted and none of them needs more
than k. In all other cases, the bifurcation will be deleted by the same iteration
as its substructure, which needs the largest number of iterations to be deleted.
Originally the Horton-Strahler number was used by Horton and Strahler [7, 19]
to study the morphological structure of river networks. It is also of interest to
numerous other subjects like botany or anatomy in which branching patterns
appear. Furthermore, there are several links of the Horton-Strahler number of a
binary tree to computer science; for an overview we refer to [21] and the refer-
ences given there. Viennot [20] noticed that if only the paired bases (symbols (
and )) contribute to the size of a secondary structure, then the enumerator gen-
erating function of secondary structures of order k coincides with the enumerator
generating function of binary trees with a Horton-Strahler number k. We will use
this observation in order to derive the generating functions that are needed to
conclude our results related to the order. As already done in [13] we will derive
our generating functions from corresponding generating functions for binary tree
structures presented in [12] just by substitutions for the variables. Since these
substitutions must be adjusted to the different parameters considered in the fol-
lowing section, it is essential to have an idea of how these substitutions work
in order to understand the methodology. Let b(¢) (resp. u(t); 1(¢)) denote the
number of nodes of an extended binary tree ¢ with two successors which are no
leaves (resp. with one successor which is no leaf; with two successors which are
leaves). The ordinary generating functions T(z,u,v) := Y, - 2P@u"®!®) and
Ri(z,u,v) := Yo aPDur®o!® for T the set of all extended binary trees and
T the set of those t € T, which have a Horton-Strahler number of k, possess the
following representations [12]:

1—2u—+V1—4du+4u2—4zv

T(z,u,v) = 5 ,
v 1 v(1—w)w?™
Ry(z,u,v) = — = ) (1)
/U Uqu(%%) Vavy/w (1 —aﬂk)
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Here, U,(z) denotes the n-th Chebyshev polynomial of the second kind (see

-1
e.g. [1]) and w = <1— 1—4%) (1—1— 1—4#) . Every sec-

ondary structure w can be reconstructed from the semi-Dyck word a(w) by in-
serting unary symbols | at the appropriate positions. Thus, since we can identify
binary trees and semi-Dyck words (see e.g. [26]), it becomes possible to consider
secondary structures based on these generating functions by inserting linear lists.
For |* a string of zero or more symbols | and | a string of at least one symbol |,
the cases to be distinguished for this procedure are:

O — I ()9 — [*(I")? () — (Wl ()0 — [*(u)0.
These cases correspond one-to-one to the following transformations for trees:

@

! !
Q Q

Z O

Here, a light shaded node descends from the pair of brackets occurring in the
corresponding transformation of a semi-Dyck word. A dark shaded node must
be inserted since the appropriate list complies with |*, whereas the insertion of
the non-shaded nodes is not mandatory as indicated by the dotted edges. The
leftmost case corresponds to a node marked by v within T and Ry. If we let z
mark a paired base (an opening or closing bracket) and a mark an unpaired base
(a symbol |) then the light shaded node corresponds to z? since it represents a
pair of bound bases. Furthermore, the three lists which must be attached to this

node are given by ﬁ Thus, the substitution

V=2t ——— (2)



takes care of this case. The three other cases can be handled in a similar way

leading to
1, a 1 o 1
= — d = . 3
Tt ((l—a)2+(1—a)2> e (3)

Remark: The correspondence given above does not work in a way which trans-
lates each binary tree with Horton-Strahler number k& into a secondary structure
of order k£ and vice versa. However, each binary tree with Horton-Strahler num-
ber k is translated into a secondary structure w which has the same number of
paired and unpaired bases and the same number of subwords () within «(w) as
the suitable structure of order k. Therefore the correspondence can be used for
all enumeration purposes considered in this paper but also e.g. in order to enu-
merate the number of hairpins or bulges in structures of order k£ as done in [13].

Now, let us use the considerations related to the combinatorial model in or-
der to investigate the Bernoulli-model sketched in the first section. We sup-
pose that the different bases X appear independently with probabilities p(X),
X € {A,C,G,U}, in a random primary structure. Assuming that only the
Watson-Crick base pairs A-U and C-G are possible, p := 2(p(A)p(U)+p(C)p(G))
is the probability that two random bases can form a hydrogen bound. Obviously,
not every secondary structure w according to Definition 1 is compatible with
a given primary structure s since the i-th and j-th base of s might be non-
complementary, whereas w;w; is a pair of corresponding brackets of w. What we
are interested in, is the expected number of different secondary structures and
related parameters supposing that only structures which are compatible with a
random sequence of bases are counted. We first observe, that the assumption
of the Bernoulli-model does not affect the unpaired bases. Since each base is
possible in an unpaired position, their probabilities sum up to 1. The situation
for the paired bases is the contrary. If we fix one base it determines which base is
possible as its counterpart. Thus a random primary structure may have ¢ paired
positions only with probability p. As a consequence, the probability that a ran-
dom primary structure of length n is compatible with | is one, the probability
that it is compatible with (|)|*~2 is p and so on. We can translate this behavior
into our generating functions by setting z to z,/p with the effect that their co-
efficients now describe the desired expected values instead of absolute numbers.
Note that this substitution only provides the generating functions needed. We
cannot reuse the asymptotics presented in [13] for the combinatorial model just
by substitutions, the asymptotics for the coefficients must be determined from
scratch. Note further that we are not restricted to the case of four different bases
with only the base pairs A-U and C-G. The considerations presented here are
valid for each probability p independent from which number of symbols or which
kind of pairings it results. In the style of [9], the probability p will be called
stickiness in the sequel.



3 Investigation of the Bernoulli-Model

In this section we will derive numerous results related to the Bernoulli-model for
secondary structures. We will use the generating functions of the previous section
together with the O-transfer method [4] to derive asymptotic estimates for the
expected number of secondary structures of size n and many other parameters all
depending on the stickiness p. In order to make this article more self-contained
we first give a brief description of how the O-transfer method works.

Assume we have a generating function f(z) = > ., fn2" with f, > 0 for all n
and we wish to approximate f,, for large n. In the sequel we will use the notation
[2"]f(2) to denote the coefficient at 2™ in the expansion of f(z) around 0. The
basic principle of the method is the existence of a correspondence between the
asymptotic expansion of f(z) near its dominant singularities and the asymptotic
expansion of the coefficients f,. Here, a singularity is called dominant if it is
located on the circle for convergence of f(z) or equivalent if it is a singularity
of smallest modulus. It is convenient to consider functions f(z) that are singu-
lar at z = 1, a restriction that entails no loss of generality. If f(z) is singular
at z = p~' and g(z) := f(z/p), then by the scaling rule of Taylor expansions
[2"f(2) = p"[z"|f(z/p) = p"[z"]g(z), where g(z) is singular at z = 1. The
method applies to so-called algebraic-logarithmic functions, i.e. functions whose
singular expansions involve logarithms and fractional powers. Two types of re-
sults are used. First, a catalogue of coefficients of standard functions which occur
in such singular expansions so that the coefficients of the main terms can be ex-
tracted. Second, suitable theorems which allow to extract the asymptotic order
of error terms involved. Both will just be presented without proof. We refer the
reader to [4, 5] for details.

The following table of commonly encountered functions together with the asymp-
totic forms of their coefficients contains all estimates which are used within this
paper. A similar table with much more entries can be found in [5].

Function Coefficient at 2"

(1—2)'/ — 72 (5 F on + 302 + O(07))

—(1 = 2)"2log(1 — 2) —\/ﬁ (% log(n) + %W + O(log(n)/n))
(1—2)7'" 77 (=5 + e + e +0(7Y)
(1-2)" agN n T (—a) + O(n " ?).

The basic requirement for the method is that the asymptotic expansion of the
function should be valid in an area of the complex plain which extends beyond
the disk of convergence of the original series. This requirement is described by the
notions of A-domain and A-analyticity which will be introduced in the following
definition.
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Definition 4 ([5]) Given two numbers ¢, R with R > 1 and 0 < ¢ < 7, the
open domain A(¢, R) is defined as

A(p,R):={z | |2| < R,z # 1,|arg(z — 1)| > ¢}.

A domain is a A-domain if it is a A(p, R) for some R and ¢. A function is
A-analytic if it 1s analytic in some A-domain.

If a function f is A-analytic and its asymptotic expansion (including the error
term) is valid for the entire A-domain then we are allowed to transfer f’s expan-
sion term by term into an asymptotic for f’s coefficients; the error term of the
expansion translates into an error term for the asymptotic. More technically we
have

Theorem 1 ([5]) Assume that f(z) is A-analytic and that it satisfies in the
intersection of a neighbourhood of 1 and of its A-domain the condition

1—2

10 = (-0 1))

Then
[2"]f(2) = o(n®*(logn)").

Here, o is one of the operators in {O, o}.

Analyticity in a A-domain is not a stringent requirement since the basic functions
=, exp(z), —log(l — z) and /1 — z are all A-analytic and apart from a few
degenerated exceptions the composition of these remains A-analytic.

Now everything is prepared to derive our results. We start our investigations
with the computation of the expected number of secondary structures assuming
that the stickiness p is a parameter. As described in the preceding sections we
can use the generating function T(z, u,v) together with the substitutions

y 1, a 1 9 1
= U= = dzx:=
v Z(l—a)?”u 2z ((l—a)2+(1—a)2> and x Zl—a

to solve this task. In the sequel we will write T'(z,a) to represent T(x,u,v)
with these substitutions inserted. In order to take care of the stickiness we set
z = z/p and a = z within T(z,a). The resulting generating function possesses
the expected number of secondary structures of size n as its coefficient at 2. It
possesses the representation

122422 —2%p—2"p—(1 - 2)\/1—22%p — 223p — 22 + 22 + 2'p?
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The dominant singularity of that function is determined by a zero of the square
root and is located at

- JTFA2p <1+,/1+4\/5)2
B 2p B 2 '

z = z4(p) :

The expansion of the function around z4(p) is given by (terms relevant for the
asymptotic of the coefficients only):

ﬂp1/4 (1 e >1/2 o (1 . >3/2
NN za(p) za(p)
\/1+4\/p

The application of the methodology described at the beginning of this section
yields:

Lemma 1 Under the assumption of the Bernoulli-model with a stickiness p, the
expected number of secondary structures of size n is asymptotically given by

n 1/4

za(p)~ p

vmn3 1+4+4,/p+2p
V2 e Tl

+ O (2alp) "n ), n — o0.

O

Note that this is just another representation of the asymptotic formula already
presented in [27]. The next parameter that we will consider is the expected
number of unpaired bases in a random secondary structure. Since each unpaired
base is marked by variable a within T'(z,a), this number can be determined by
differentiation with respect to a. The appropriate generating function is given by

0 (z—=1)2(1+2(pz—1)) = 1+ 2(2pz + 2 —2))Y
[%T(z\/ﬁ, az)] - 2p(z — 1)22Y ’

a=1

T =1+ 2(=24 2(1 + p(—=2 + 2(—2 + pz2)))).

Again, the only dominant singularity is located at z = z4(p). The corresponding
expansion is given by (terms relevant for the asymptotic only)

p!/4

“1/2 1/2
<1— ) +O<<1— z ) )
V2 NI AB(1+4p+2p) —1—6p—sp N #(P) 2a(p)

Thus we find
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Figure 5: The portion of unpaired bases in a random structure depending on the
stickiness p.

Lemma 2 Under the assumption of the Bernoulli-model with a stickiness p, the
expected number of unpaired bases in all secondary structures of size n is asymp-
totically given by

n 1/4

za(p)~ p

VAo [T p(14+4/p+2p) —1—6./p—8p

+0 (zd(p)_”n_3/2) , I — 00.

O

We will compute the averaged expected number of unpaired bases in a random
secondary structure of size n by dividing the two asymptotic formulae one by
the other. Note that this yields the fraction of the expected values but not the
expected value of the fraction.

Theorem 2 Under the assumption of the Bernoulli-model with a stickiness p, the
averaged number of unpaired bases in a secondary structure of size n is asymp-

totically given by
n

VI+4/p

+0(1), n — 0.
]

Note that this is not the same result as the one presented in [6] since there the

authors have assumed a minimal hairpin-loop length of three. Figure 5 shows

a plot of the slope 1 which describes the portion of unpaired bases in the
P

structure. In Table 1 you find some exact values of the averaged number of
unpaired bases compared to our asymptotical equivalent as given in the previous
theorem. We observe that the error made by our asymptotic is rather small,

13



n |~ =1/]~]
10 4.47 1 5.20 |1.16] 5.11 | 5.87 |1.15]| 5.38 | 6.15 |1.14| 5.77 | 6.51 |1.13
20 22.36(23.11(1.03]25.55|26.38|1.03]26.92|27.781.03 |28.87|29.77|1.03
100 {|44.72]45.47]1.02|51.11|51.93|1.02|53.84|54.70|1.02|57.74|58.64|1.02

Table 1: Some exact values for the averaged number of unpaired bases compared
to their asymptotic equivalent as given in Theorem 2. The columns labeled
with ~ contain the asymptotical-, the columns labeled with = the exact values;
the columns labeled with / contain the quotient of the exact divided by the
asymptotical value, i.e. the relative error of the asymptotic. All entries are
rounded to the second decimal place.

even for small values of n. This is of special interest for our case since functional
RNA molecules tend to be short and thus a comparison of our results to real
data like e.g. tRNA sequences as contained in the database of Sprinzl et al. [17]
would become questionable if large values for n were required. The precision
of all the other asymptotics which will be presented throughout this paper is
always similar to the one discussed here. Next, we will see what influence on the
number of hairpins in a secondary structure is implied by the stickiness. Since
every hairpin possesses exactly one loop, it is sufficient to count the number of
hairpin-loops. Such a loop is generated exactly at those positions of a secondary
structure w € {(,), |}* where we had to insert |* between a pair of brackets () in
order to comply with condition (3) of Definition 1. Furthermore, the insertion of
|* is translated into generating functions by means of the geometric series -

Thus we can mark each hairpin by variable h by changing each £- into lh_—“a
within the substitutions for z, u and v. Afterwards we set 2 = 2,/p and a = 2z to

get
1—2[1_ 22p (1 + hz)
(—1)*
_\/1+z(—4+z(6+(—4+z)z+p222(—1+hz)2—2p(z—1)2(1+hz)))]
(z—1)* '

22%p

Taking the first partial derivative with respect to h and setting h = 1 afterwards
provides the desired generating function

2 - 1+ 2(pz—1)
2(2 — 1) VI+2(=2+2(1+p(=2+2(=2+p2)) )

In this case the dominant singularity again stems from a zero of the square root
and is located at z = z4(p) also. The expansion at z4(p) possesses the following

14



term relevant for the asymptotic

p 1 —1/2 1/2
2@5%1 <1_ ZdiP)) | O ((1_ ZdiP)) />'

Thus, we have for the asymptotic of the coefficient

Lemma 3 Under the assumption of the Bernoulli-model with a stickiness p, the
expected number of hairpins in all secondary structures of size n is asymptotically
given by

z(p)™" (HZ;\/TJ 3
v 2+ /T+4p—1

+ 0 (24(p) " *?) , n — 0.

O

Dividing this quantity by the expected number of secondary structures of size n
gives some insight into the behavior of a single structure. We have

Theorem 3 Under the assumption of the Bernoulli-model with a stickiness p, the
averaged number of hairpins in a secondary structure of size n is asymptotically
given by

1_ VP
\/1+4y/p
2= b

n+ O(1), n — oc.
]

In Figure 6 the slope of this formula is plotted against p. In Figure 7 we find a plot
of the number of bases which reside in a random secondary structure per single
hairpin on the average. Due to the drastic increase of the number of unpaired
bases for shrinking p we are faced with the question where all the unpaired bases
reside. There are several possibilities. The length of the loops, bulges and tails
may increase or the number of bulges may become larger. All possibilities will
be considered in the following such that, at the end, the real behavior is known.
At first, we will consider the number of bulges. The bulges are generated by the
insertion of |* into the semi-Dyck words and equivalently by the geometric series
ﬁ for the generating functions. However, only the insertion of at least one |

generates a bulge. Thus we have to decompose |* into {}U|, i.e. 7= into 1+

1—-a”
Then each bulge is marked by variable b by using 1 + lb_—“a instead of fla within
the substitutions for , u and v. Furthermore, the tails are generated by |* also.
Thus, these substitutions would overestimate the number of bulges; at two places
(two tails) the series —— is replaced even if it should remain unchanged. Since
(1+:22)%(1—a+ba)~? = (=) we can get rid of this problem by multiplying the

1-a
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Figure 6: The slope of the number of Figure 7: The averaged number of
hairpins in a random structure depend- bases per hairpin in a random structure
ing on the stickiness p. depending on the stickiness p.

resulting generating function by (1 — a + ba) 2. As done for the enumeration of
hairpins we then have to set z = z,/p and a = z, take the first partial derivative
with respect to b and set b to 1 afterwards. This procedure yields the generating
function in question which possesses the representation

— — 4 _ 24 95,3
3—62+322 —p2? — 22 + 3+2(9+2(—9+32+p(4+2—(5+p)2” +2p2z°)))
\/172z+z272pz272pz3+p224

2p(z — 1)z

Its expansion around the dominant singularity z4(p) is given by (terms relevant
for the asymptotic only)

VI+4/p+2 Yo Vo m/e 1 e
i+ ity T <1 zd(m) o (1 zd<p>> |

The resulting asymptotic for the coefficient is given by

Lemma 4 Under the assumption of the Bernoulli-model with a stickiness p, the
expected number of bulges in all secondary structures of size n is asymptotically
given by

z(p) " V1tdy/p+2 3/2) 1/ 2.(p) "3 n = 0o
\/ﬁ2(1+\/m+\/ﬁ)(p+4p ) O L) om0

O

Averaging in the same way as before we find
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Figure 8: The slope of the number of Figure 9: The quotient of the number
bulges in a random structure depending of bulges and the number of hairpins
on the stickiness p. depending on the stickiness p.

Theorem 4 Under the assumption of the Bernoulli-model with a stickiness p,
the averaged number of bulges in a secondary structure of size n is asymptotically
given by

Ayt yltdyp -l n+ O(1), n — oo
24+ /1+4,/p(2+5p) +9,/p+4p ’ '

O

If we take a look at the plot of the slope of this quantity presented in Figure 8
we observe that at the beginning (p = 1) the number of bulges increases. We
find numerically, that its maximum is given for p = 0.351557... . For p =
0.1266911 ... it reaches again the level of p = 1. Figure 9 presents the quotient
of the expected number of bulges and the expected number of hairpins which is

given by

1+ (2yp—1)/1+4p

2p '

As we can see, there are always more bulges than hairpins, with decreasing p the
bulges are spreading more and more.
Next, we will consider the length of the loops and bulges. This can be done in
a similar way like the one used to enumerate the number of hairpins and bulges.
Instead of marking an entire loop or bulge by a variable, we have to mark the
bases of them. For the hairpins this means to replace % by lf‘}‘w within our

1—a
substitutions for z, u and v. Again, we set z = z,/p, a = z, take the first partial

17



derivative with respect to h and set h = 1 afterwards. We find

2(1— 24 p2? — /1 =22+ 22 — 2pz2 — 2pz® + p2z?)
2(1 — 2)2\/1 — 22 + 22 — 2p22 — 2p23 + p22* '

As expected, the dominant singularity is located at z4(p) where the function
possesses the expansion (terms relevant for the asymptotic only)

(VI+4A-D) 0+ /T8 (- 2 72 R
2(3 4 /1 +4/p)2(p + 4p>/2)t/4 (1 zd(p)> +O<<1 Zd(p)> )

Obviously, this expansion can be translated into an asymptotic for the coefficients
and we can average by dividing the resulting expression by the expected number
of structures.

We find a generating function where each unpaired base of a bulge is marked by
variable b by replacing the geometric series ﬁ corresponding to the insertion
of [* by ﬁ Again, we must take care of the overestimation which now can
be corrected by the factor (£=22)2. The procedure to find an asymptotic for
the coefficients and the averaged number of bulges remains the same and its
presentation is therefore left out. At the end, we find that (in the leading term of
the asymptotic) the averaged loop-length and the averaged bulge-length behave

in exactly the same way. We have

Theorem 5 Under the assumption of the Bernoulli-model with a stickiness p >
0, the averaged asymptotical length of a hairpin-loop in a secondary structure of
size n has the same leading term as the averaged asymptotical length of a bulge
in a secondary structure of size n and is given by

L VT2 =2
4/p—2p

(n 1), n — oo.

O

Note that this result implies that the ratio plotted in Figure 9 can also be consid-
ered as the ratio of unpaired bases residing in bulges compared to those residing
in hairpin-loops. In [13] the loop-length and the length of bulges were determined
for the combinatorial model, i.e. for the case p = 1. It was shown there, that the
difference in the second order term of the asymptotical representations for the two
quantities is rather small. A plot of the ezpected loop-length is presented in Fig-
ure 10. The realistic lower bound of 3 is reached at p = 1(v/6—2)? = 0.07576. .. .
Such a small value for the stickiness can only result from a quite asymmetric dis-
tribution of the bases. Before we will consider the effect of the stickiness to
the order of a secondary structure we want to estimate the number of unpaired
bases residing in the tails. The generating function enumerating this quantity re-
sults from subtracting the generating functions enumerating the unpaired bases
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length of a hairpin-loop depending on
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in loops and bulges from the generating function which enumerates all unpaired
bases and is given by

1-22422=2%p—2p— (1 —2)\/1+ 2(=2+ 2(1 + p(—2 + 2(—2 + p2))))
pz(1 — 2)? '
Note that it is impossible to just subtract the asymptotical numbers of unpaired
bases in loops and bulges from the asymptotical total number of unpaired bases to
get a result, since the number of unpaired bases located in the tails is of smaller
order and is therefore hidden within the O-terms of these asymptotics. As a
consequence, this subtraction simplifies to zero. The expansion of the generating

function around its dominant singularity z4(p) is given by (terms relevant for the
asymptotic only)

— 1/4 1/2 3/2
1601+ 4y/p)/'\/1+ T+ 4y <1_i>/+0 <(1_L>/ |
(V1+4/p—1)32(2\/1+4\/p+4,/p—2) za(p) za(p)

Applying the O-transfer method and dividing by the expected number of sec-
ondary structures of size n finally yields

Theorem 6 Under the assumption of the Bernoulli-model with a stickiness p, the

averaged number of unpaired bases located in the tails of a secondary structure of
size n 18 asymptotically given by

8
+ 0™, n = oco.
4D+ 2/1+4,/p—2 (™)
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O

If we take a look at the plot of this asymptotical number minus the asymptotical
number of bases located in a loop as presented in Figure 11 we observe that for
p = 1 there are less bases located in both tails than in a random loop. We find
that for p = (2 — 1/(2))? = 0.3431 ... both quantities become the same, for any
value smaller than this the number of bases in the tails becomes larger than the
number of unpaired bases in a random loop.

The last parameter that we want to consider is the order of a secondary structure.
While all the parameters considered so far were related to specific substructures
of the molecule, the order gives some information about the overall shape of it.
We will determine the expected order (the quotient of the expected sum of orders
of all structures divided by the expected number of structures) of a structure of
size n and the expected number of secondary structures of size n and order k£ both
depending on the stickiness p. In order to compute the first quantity we use the
rightmost representation of Ry (z, u, v) given in (1) together with the substitutions
given in (2) and (3). Furthermore we set z = z,/p and afterwards a = z which

yields the following representation for the generating function R,(f )(z), counting
the expected number of secondary structures of order &

(p) _ vz (1_73)7”2’671
Rk (Z)_]__Z\/E(l_wgk)’

2,5
1 P .
(=14 22+ 2(=14+p+p2)))?

w:=(1l—¢)/(1+¢€), €:= \/1—

We have to consider [2"]) ", kR,(Cp )(z) which provides the expected sum of the
orders of all secondary structures of size n. By trivial expansions we find

\/E l—w k—1 .
STRRP() = 2T Sk

k>1 k>1
- >0

J/

= :;(rw)

The method of choice to handle sums like ¢ is the Mellin summation technique
surveyed in [3]. This technique is based on a direct correspondence between the
asymptotic expansion of a function (at either 0 or co) and the singularities of
the transformed function. Furthermore, the so-called separation property of the
Mellin transform which leads to a closed-form representation of the transform of
certain kind of sums (so-called harmonic sums) using zeta functions is essential.
In our specific example we compute the Mellin transform of o (e *) which is given
by
25

M(s) = 51

C(s)I'(s), R(s) > 1,
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for ¢ the Riemann zeta function and I'(s) the complete gamma function. M(s)
possesses poles for s =1, s =0, s = —k, k€ Nand s = fn%k) =: Xk, k € Z\{0}.
According to the methodology an expansion of o(e™") for ¢ — 0 is given by the

sum of the residues of M(s)t~* at these poles. We find for those residues:

s=1 : 27!,
0 2In(t) + 2y — 2In(7) — 31n(2)
S =
41n(2) ’
1
s=-—1 ——1,
12
3 L5 and
s=— ——t° an
5040
COm)(xw)
= e AL
ST Xk In(2)
In general, the residue for s = —2n, n € N, is 0 and that for s = —2n — 1,

n € Ny, is in O(¢*"*1). The expansion of o(e’) at ¢t = 0 given by the sum
of these expressions must be translated into an expansion around the dominant
singularity of ), -, kR,(cp)(z). The location of this singularity can be determined
in the following way: Obviously,

2T (2 /P, 2) < [2"] D kRY (2) < nl2"|T (2+/p, 2)

E>1

holds. Since T(z\/p,z) and z-4T(z\/p,z) have the same dominant singularity
z4(p) and since [2")2 LT (2,/p, z) = n[z"]T(2,/p, z), we can conclude that zy(p) is

the dominant singularity of ), ., kR,(Cp)(z), too. At z = z4(p) the square root €
evaluates to zero. Thus we expand ¢t = —In((1 —¢€)/(1 +¢€)) around € = 0 to find
that t = 2¢ + O(e?). By expanding € around z4(p) we finally find

Y (;%)“ <T>o<<ﬁ>> n

~”

=:c1

The factor Tﬂz% possesses the following leading term of its expansion at z4(p)

4(1+4¢p)1/4¢1+m<1_ . >1/z. 5
(v/1+4y/p—1)3/2 za(p)

=:c2

By setting ¢ to its equivalent (4) within all the residues given above, summing
the resulting expressions and multiplying with the expansion (5) we finally find
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the expansion of our generating function around its dominant singularity. This
expansion is given by

1/2
o (=) W(1-55) 2me)s2r-mi)-mE) (= \"
¢ 41n(2) 41n(2) U zalp)
1—xg
. z 2
—2mik logy(e1) <1 . )
,#0 za(p)

This expansion can be translated into an asymptotic for the coefficients by means
of the O-transfer method. By dividing the resulting expressions by the expected
number of secondary structures of size n we finally find

Theorem 7 Under the assumption of the Bernoulli-model with a stickiness p,
the averaged order of a secondary structure of size n is asymptotically given by

32m? p v+ 2 n .
<3+,/1+4 1+4 ")_2ln(2)+@<l°g2<c_§>>+o(" )

1/4
n — oo. Here, ¢, = (34 /1+4D) (% +i) and O(z) is the periodic

VP
function of very small modulus with the following Fourier series:

o) = ﬁ ;(Xk 00 () ¢)em=, i o= 2mik-

n( 2 In(2)
]

Only the constant term of this asymptotic and the period of © depend on p. Thus
the stickiness affects only marginally the averaged order of a random secondary
structure. Figure 12 shows how a change of the stickiness relocates ©, in Figure 13
you find a plot of the constant term without the contribution of © against the
stickiness p.

Finally, we will study the expected number of structures of given order k. For that
purpose we return to the representation of Ry(x,u,v) based on the Chebyshev
polynomial as given in (1). Applying the substitutions given in (2) and (3),
setting 2 to z,/p and setting a to z afterwards yields the following representation
of the generating function of the expected number of secondary structures of

order k vz ) ) ;
») " —14 2z —2°+pz*+pz
Rk (Z) y — U2k 1 ( 225/2[) .

The dominant singularity zj(p) of that function results from a zero of the Cheby-
shev polynomial for which it is known that

™m
Un<cos< >>:0,1§m§n,
n+1
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Figure 12: A plot of O(z) for p = ; Figure 13: The constant term (without
(right) and p = 2 (left). O©(x)) of the averaged order depending
on the stickiness p.

holds. Therefore we have to find the smallest solution of

-1 2o — 2 2 3
e 2Z5/;rpz TPZ _ os(m2Fa), 1 <m < 2F— 1.
22

. i
v~

=:f(zp)

This is not a trivial task, since it is equivalent to determine the roots of a polyno-
mial of sixth degree. However, by discussing the equations f(z,p) = cos(m2 *r)
for 1 < m < 2F — 1, it will be possible to get a quite precise approximation of
this solution. Assuming that p > 0, we find for all p that f(z,p) = —1 has the

. —4/1+4 .
smallest solution z = w =: z;(p). Furthermore, the smallest solution

of f(z,p) = 1is given by z = 1 for all p. Now, since f'(z) > 0 for z € [z(p), 1] and
all p, we know that f is a monotone increasing function within this interval. Thus,
the smallest solutions of f(z,p) = cos(m27%r) result from the choice m = 2% — 1
since this minimizes the value of the cosine. So the dominant singularity zj(p) is
the smallest real solution of f(z,p) = cos((2¥ — 1)27%7) = — cos(2 *x). Implied
by properties of the cosine we find that the sequence f(z(p),p) is monotone de-
creasing with respect to k. Furthermore, we can argue that z;(p) is a monotone
decreasing sequence itself by means of the positivity of the first derivative f’ for
all values in the interval [z, (p), z1(p)] C [2¢(p), 1]. Since the value of f"(z,p) is

negative for all p and all z in that interval, we can conclude that % >

f'(zx(p)) for all possible k and p. Now setting f(z(p)) = —cos(2 *7) and ex-
panding the cosine finally proves 0 < 2z;,(p) — 2oo(p) < 4% for all p. Note that

2k(p) P23 1 for each k.
The next step is to find an expansion of R,(f)(z) around zx(p). Based on the
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representation [1, 22.3.16]

Un(z) = sin((n + 1) arccos(z))

sin(arccos(z))

we find

(1-s58) —45(p)"p
o () +e0s @) 5= 62(0) + 4(0)° — k() + P )

(6)

. B sin(arccos(x)) ko 20
1 27k = —2""sin?(27%7).
oty T O G arecos(y = 2O

Together with the factor y/z/(z — 1) we find in that way the expansion of R,(cp)(z)

at zx(p)
1 —42;,(p)3p27F sin?(27%7)

(1= =) = o) 2ol + 40— 51

and by means of the O-transfer the following result

Theorem 8 Under the assumption of the Bernoulli-model with stickiness p > 0,
the expected number of secondary structures of size n and order k 1s asymptotically
given by

—4z;,(p)*p2~F sin?(27F )
(1 = 2(p)* (P2 (p)* + 26(p) — 5)’

Here, zy(p) is the smallest real solution of the equation

zk(p)~ n — 0o.

—1 422 — 22+ p2% +p2?

_ —k
2572 = —cos(27"m).

The following approximation for zx(p) holds:

L= IEAB2p _
2p - '

0 < z(p) —
O

Some numerical values of z;(p) can be found in the table of Figure 14. By means
of Theorem 8 it becomes possible to connect the result for the expected order
to some sort of density function which results from the quotient of the expected
number of structures of order k£ and the expected number of structures. A plot of
that density is shown in Figure 15. The different curves correspond to structures
of size n = 100 and the probabilities p = 1% for j =1,2...,10 from left to right.
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Figure 14: Some numerical values of zj(p) together with the corresponding ap-
proximation for k& — oo (last row).

Figure 15: The density of the order for structures of size 100 and p = %, Jj =
1,2,...,10 (from left to right).

We observe that the density is quite peaky such that we have to expect a small
variance. Furthermore, in accordance with our results for the averaged order the
influence of the stickiness p is rather poor. We want to conclude this section by
remarking that for the case p = 1 the variance has been determined in [13]. It
was shown there, that the variance is asymptotically given by 0.17939... plus an
oscillating function of small modulus.
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total average
(percentage)

number of unpaired bases 1542431 (52.23% of all bases)
number of paired bases 1410624 (47.77% of all bases)
number of hairpins 66391 | 52.19 hairpins per structure
number of bulges 232955 | 183.14 bulges per structure
length of hairpin-loops 489623 7.3748 bases per loop
length of bulges 1052806 4.5194 bases per bulge
order 6044 4.7516

Table 2: Statistical data computed from 1272 entries of the long subunit riboso-
mal database of Wuyts et el. .

4 Comparison to Real Secondary Structures

In this section we will compare our results for the Bernoulli-model to the data
contained in the long subunit ribosomal RNA database of Wuyts et al. . For
this purpose we take 1272 sequences contained in the database together with the
encoding of their secondary structure and analyze parameters like the average
proportion of paired to unpaired bases or the average number of hairpins of
a structure. We used a set of simple counting programs in order to compute
the total numbers and averages of interest. The corresponding results can be
found in Table 2. For the Bernoulli-model we assume that the length n of the
structures is equal to the average length of the sequences taken from the database
(which is given by 2321.58). Then, we compute the resulting values for the same
parameters from our asymptotic formulae for reasonable choices for the stickiness'
p. Afterwards we determine those values for p which make our formulae equal to
the corresponding averages of the real world data. All the resulting quantities can
be found in Table 3. If we compare the two tables we find that some parameters
fit for a reasonable choice of the stickiness p while others are completely out
of scope. For instance, the average proportion of paired to unpaired bases in
real world molecules equals the one for the Bernoulli-model for p = 0.44, for
p = 0.25, i.e. for the Bernoulli-model with a uniform distribution of the four
bases and Watson-Crick base pairs only, the Bernoulli-model is quite close to the
real world data (57.74% compared to 52.23% of unpaired bases). Surprisingly,
the same holds for the average order of a molecule. Even if this parameter is
somehow related to the (global) planar topology of the entire structure, both
values coincide for a stickiness p = 0.2626, for p = 0.25 their difference is given

Ip = 1 corresponds to the combinatorial model, p = % corresponds to a binary alphabet
of complementary bases. The case p = i considers a uniform distribution of the four bases

together with Waston-Crick pairings only, p = % takes all canonical pairing into account.
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1
1 =

olw| RS

1 1
2
percentage of unpaired | 44.72 | 51.11 | 53.84 | 57.74 0.44
bases
percentage of paired bases 55.28 | 48.89 | 46.16 | 42.26 0.44
average number of hairpins || 245.10 | 229.00 | 220.62 | 207.36 | 0.0028
per structure
average number of bulges || 396.57 | 414.59 | 416.94 | 414.71 | 0.0050
per structure
average length of a hairpin- | 1.62 1.84 1.96 2.15 | 0.0066
loop
average length of a bulges 1.62 1.84 1.96 2.15 | 0.0227
average order of a structure | 4.91 4.84 4.80 4.74 | 0.2626

Table 3: Parameters computed for the Bernoulli-model assuming a structure-size
of n=2321.58. The column labeled with = contains those values for p which make
the results for the Bernoulli-model equal to those for the real world structures as
given in Table 2. The values for the average order were computed without taking
the oszillation into account.

by 0.01. Therefore it is justified to belive that the Bernoulli-model is accurate
with respect to the average order. Recall that the order only depends marginally
on the order which might be the reason for this observation. The other parameters
which were considered do not fit at all. The average number of hairpins and the
average number of bulges of a structure in the Bernoulli-model equal those of the
RNA database for a stickiness much smaller than 1/100. Such a small value for
the stickiness is absolutely inadequate. If, for example, we assume a stickiness
of 0.0028 as given by an equality of the average number of hairpins, we would
get an average proportion of 90.85% of unpaired bases to all bases within the
Bernoulli-model. We also find inadequate values for the stickiness in case of the
average length of a hairpin-loop and the average length of a bulge, but the order
of magnitude differs in both cases by a factor about 3.4. This might be due to
the unrealistic assumption of a minimal loop length of 1 for our computations.
However, the assumption of a minimal loop-length of for example 3 won’t give
much change to the observed behavior.

Within our model, a minimal loop-length of m > 0 can be considered by the
following substitutions:

9 a™ 1 9 a™ 1 9 1
= = — d = .
v Z U 2z ((1—@)2+(1—a)2 and I Zl—a
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The assumption of m = 3 and a stickiness 0.25 yield an averaged expected loop-
length of
4.3862. ..

which can be concluded by the same computations as performed for m = 1. Thus,
even in this more realistic setting, the average loop-length in the Bernoulli-model
with p = 0.25 is only about 60% of the average for the real world data. The
average length of a bulge in the Bernoulli-model achieves about 47.6% of the real
average bulge length. Since the number of hairpin-loops and bulges is far too
large in the Bernoulli-model while the relation of paired to unpaired bases seems
to be realistic, we have to expect one major structural difference between struc-
tures in the model and real molecules within the length of the ladders. Only for
structures with mostly short ladders it is possible to have a huge number of loops
and bulges. However, those structures are unstable for a lack of stacking and will
therefore not occur in reality. We just want to remark that we also compared our
results for the Bernoulli-model to the tRNA database of Sprinzl et al. [17]. The
observations made there were quite similar, we thus resigned to present them in
detail.

Only the proportion of unpaired bases and the order behave realistic within the
Bernoulli-model. Both, in some sense, are global parameters which are deter-
mined by information on the entire structure. For such parameters it seems to be
sufficient to consider only the underlying combinatorial structure together with
some pairing probabilities (as done in the Bernoulli-model) in order to model
them in a realistic way. Parameters, which are related to details of the structures
and thus are of interest e.g. in relation to the prediction of secondary structures,
behave totally unrealistic in our model. We thus have to conclude that significant
factors which determine the details of a real secondary structure are not taken
into account. The above mentioned disregarded minimal length of stable ladders
seems to be one major weakness of the Bernoulli-model in this respect. As already
Zuker and Sankoff [27] pointed out, the Bernoulli-model also considers structures
which contain pairs of bases which are not joint by a hydrogen bound even though
they are in stereochemically favorable positions for base pairing. This is of course
an unrealistic behavior of our model, but to consider only satutated? structures
without any other change of the model would decrease the length of the loops
and thus would affect the results into a false direction. Therefore, the search for a
realistic model must try to take more details into account than only the existence
of complementary bases together with their pairing probabilities.

2A model for saturated structures was recently presented at GCB’01 by Evers et al.[2].
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5 Conclusions

In this paper we have investigated the Bernoulli-model for RNA secondary struc-
tures. Compared to similar considerations of Hofacker et al. [6] we have deter-
mined different parameters with different methods. Furthermore, we have com-
pared our results to real world data in order to judge the quality of the model.
As already pointed out by Zuker and Sankoff [27], the Bernoulli-model is more
realistic than the pure combinatorial point of view which has been considered by
numerous authors (see e.g. [6, 13, 15, 20, 22, 24]). However, our comparison of
the Bernoulli-model to the data of the large subunit ribosomal RNA database of
Wuyts et al. [25] proved that many details of structures in the model like the
length and the number of their hairpin-loops or the length of their ladders are
far from being realistic. Surprisingly, not only the proportion of unpaired bases
but also the order of a structure seems to behave quite realistic in the Bernoulli-
model. Of course, all these studies can only be a starting-point for investigations
which must try to consider more details of the real structures’ folding mechanism.
Even if our results do not have a direct influence on applications, the methodol-
ogy used to derive them is of independent interest and may be of use for future
work on RNA structure and related problems.
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