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Abstract

Predicting the secondary structure of RNA molecules from the knowledge of the primary
structure (the sequence of bases) is still a challenging task. However, many efforts have been
made over the last decades. For instance, the algorithm of Zuker [30] is able to give good
results based on the search of an energetic optimal configuration. Nevertheless the output of
such algorithms does not always provide the real folding of the molecule and it would be a nice
feature to cross-check them with well-known structures of the same type of RNA. In this paper
we show how to use probability generating functions as a model for RNA secondary structures.
These generating functions are derived from stochastic context-free grammars that are trained
on a database of RNA secondary structures, i.e. their probabilities are adapted to the real world
data. The resulting model is very realistic and can be used to derive results concerning the
average shape of a molecule together with the corresponding variances and higher moments. We
propose to use this information as a statistical filter for structures predicted by any algorithm:
If a number of conserved structural parameters, i.e. parameters with a small variation, are too
far beyond the expectations one should not rely on the prediction.

1 Introduction and Basic Definitions

A ribonucleic acid (RNA) molecule consists of a chain of nucleotides of which exist four different
types. Each nucleotide contains a base, a phosphate group and a sugar group. The various types of
nucleotides only differ by the base involved; there are four choices for the base namely adenine (A),
cytosine (C), guanine (G) and uracil (U). The specific sequence of the bases along the chain is called
primary structure of the molecule. It is usually modeled as a word over the alphabet {A,C,G,U}.
Through the creation of hydrogen bounds, the complementary bases A and U (resp. C and G) form
stable base pairs with each other. Additionally, there is the weaker G-U pair, where bases bind
in a skewed fashion. Due to these base pairs, the linear chain is folded into a three-dimensional
conformation called tertiary structure of the molecule. For some types of RNA molecules like
for example transfer RNA, the tertiary structure is highly connected with the function of the
molecule. Since experimental approaches which allow the discovery of the tertiary structure are
quite expensive biologists are looking for methods which make it possible to predict the tertiary
structure from the knowledge of the primary structure. With respect to this concern it is customary
to consider the simplified secondary structure of the molecule, where we restrict the possible base
pairs such that only planar structures occur. Over the last decades many efforts have been made
about the prediction of the secondary structure and several algorithms using rather different ideas
were presented [5, 18, 21, 22, 25, 28, 30]. However, the output of such algorithms should not be
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assumed to be error-free so sometimes they predict a wrong folding of a molecule. Thus it would
be a nice feature to cross-check them with well-known structures of the same type of RNA. In this
paper we propose to use a statistical filter for this purpose which compares structural parameters
of the predicted molecule with those of an expected molecule of the same type and the same size
(number of nucleotides/bases), and we show how such a filter can be computed. If a number
of conserved structural parameters, i.e. parameters with a small variation, are too far beyond the
expectations one should not rely on the prediction. Literature offers a lot of different results dealing
with the expected structure of RNA molecules. Starting with the pioneering work of Waterman
[28] in which the first formal framework for secondary structures was given, authors considered
the combinatorial and the Bernoulli model of RNA secondary structures (where the molecule is
modeled as a certain kind of planar graph) and they derived numerous results like the average size
and number of hairpins and bulges, the number of ladders, the expected order of a structure and its
distribution or the distribution of unpaired bases (see [14, 11, 19, 20]). In [20] it was pointed out that
both models are rather unrealistic and thus the corresponding results can hardly be used for our
purposes. We show how it is possible to construct a realistic model for RNA secondary structures
which allows us to derive the corresponding expectations, variances and all other higher moments
to be used according to our ideas. In the rest of this paper we assume that the reader is familiar
with the basic notions of Formal Language Theory such as context-free grammars, derivation trees,
etc. A helpful introduction to the theory can be found in [15]. We also assume a working knowledge
on the notion of secondary structures and the concepts like hairpins, interior loops, etc. We refer
to [26, Ch. 3] for a related introduction.

Besides modelling a secondary structure as a planar graph, it is a slightly different approach to
model it by using stochastic context-free grammars as proposed by [24]. A stochastic context-free
grammar (SCFQG) is a 5-tuple G = (I, T, R, S, P), where I (resp. T') is an alphabet (finite set) of
intermediate (resp. terminal) symbols (I and T are disjoint), S € I is a distinguished intermediate
symbol called aziom, R C I x (I UT)* is a finite set of production-rules and P is a mapping from
R to [0, 1] such that each rule f € R is equipped with a probability ps := P(f). The probabilities
are chosen in such a way that for all A € I the equality ZfeRpfaQ(f),A = 1 holds. Here ¢ is
Kronecker’s delta and Q(f) denotes the source of the production f, i.e. the first component A of
a production-rule (4, ) € R. In the sequel we will write p; : A — « instead of f = (4, ) € R,
pr = P(f). In Information Theory SCFGs were introduced as a device for producing a language
together with a corresponding probability distribution (see e.g. [1, 12]). Words are generated
as for usual context-free grammars, the product of the probabilities of the used production-rules
provides the probability of the generated word. Note that we do not always get a probability
distribution for the language in this way. However, there are sufficient conditions which allow to
check whether or not a given grammar provides a distribution. One was interested in parameters
like the moments of the word and derivation lengths [17] or the moments of certain subwords [6].
Furthermore, one was looking for the existence of standard-forms for SCFGs such as Chomsky
normalform or Greibach normalform in order to simplify proofs [16]. Some authors used the ideas
of Schiitzenberger [3] to translate the corresponding grammars into probability generating functions
in order to derive their results [6, 17]. However, languages resp. grammars were not used to model
any sort of combinatorial object besides languages themselves and therefore the question of how
to determine probabilities was not asked. In Computational Biology SCFGs are used as a model
for RNA secondary structures [18, 24]. In contrast to Information Theory not only the words
generated by the grammar are used, but also the corresponding derivation trees are taken into
consideration: A word generated by the grammar is identified with the primary structure of an
RNA molecule, its derivation tree is considered as the related secondary structure [24]. Note that
there exists a one-to-one correspondence between the planar graphs used by Waterman as a model



for RNA secondary structures and a certain kind of unary/binary trees (see e.g. [19]). Thus the
major impact from using SCFGs is given by the way in which probabilities are generated. Since
a single primary structure can have numerous secondary structures, an ambiguous SCFG is the
right choice. The probabilities of such a grammar can be trained from a database. The algorithms
applied for this purpose are generalizations of the forward/backward algorithm used in the context
of hidden Markov models [4, 18] and are also applied in Linguistics, where one usualy works with
ambiguous grammars, too. At the end of the training the most probable derivation tree of a primary
structure in the database equals the secondary structure given by the database. Applications were
found in the prediction of RNA secondary structure [5, 18] were the most probable derivation tree
is assumed to be the secondary structure belonging to the primary structure processed by the
algorithm. So far, no one used these grammars to derive structural results, which in case of an
ambiguous grammar is obvious since it is impossible to find any sense in such results. In this paper
we provide the link between both disciplines and go even further. We use non-ambiguous stochastic
context-free grammars to model the RNA secondary structures. This is done by disregarding the
primary structure and representing the secondary structure as a certain kind of Motzkin language,
(i.e., a language over the alphabet {(,),|}, which encodes unary/binary trees equivalent to the
secondary structure) which now is the language generated by the grammar. We further propose
a simple algorithm to train non-ambiguous SCFGs which works much faster than the algorithms
normally used. From the SCFGs we derive probability generating functions which are used to
conclude quantitative results related to the structure of RNA secondary structures. In order to
train the grammar we derived a database of Motzkin words which correspond one-to-one to the
secondary structures contained in the databases of Wuyts et al. [29]. We have also used the
databases of Brown for RNase P sequences [2] and of Sprinzl et al. for tRNA molecules [27], the
corresponding results are not reported here due to lack of space.

2 A Statistical Filter for Predicted RNA Molecules

In this section we will present our results without any comment on how they were derived; technical
details are presented in Section 3. However, we will address possible applications for our findings.
Most notably we were able to quantify the expected characteristics of substructures of large subunit
(LSU) ribosomal RNA molecules, the corresponding formula are presented in Table 1. There each
parameter is presented together with its expected asymptotical behavior, i.e., its expected behavior
within a large (number of nucleotides) molecule.

Note that we have investigated all the different substructures which must be distinguished in
order to determine the total free energy of a molecule which is necessary e.g. for certain predicting
algorithms. Compared to all previous attempts to describe the structure of RNA quantitatively
(see for instance [14, 19, 20, 23, 28]), the results presented here are the most realistic. They should
be considered as the structural behavior of an RNA molecule folded with respect to its energetic
optimum. Therefore, they are of interest themselves; for the first time we get some insight on
how real secondary structures behave. However, the realistic modelling of the secondary structures
gives rise to different applications like for instance the following: Firstly, we can use our results
in order to provid bounds for the running-time of algorithms working on secondary structures as
their input; we don’t want to argue this way. Secondly, when predicting a secondary structure, our
results may provide initial values for loop lengths etc. when searching for an optimal configuration
such that a faster convergence should be expected. Thirdly, and this is our main concern in this
article, the results may serve as a statistical filter for predicted RNA secondary structures. Assume
we use some algorithm to predict the secondary structure of a LSU ribosomal RNA sequence. A
simple counting program can be used in order to determine parameters like the number of hairpins,
bulges, multiloops and so on together with the corresponding sizes (lengths). Setting n within the



Table 1: Expectations for different parameters of large subunit ribosomal RNA secondary struc-
tures. In all cases n is used to represent the total size of the molecule.

Parameter Expectation
Number of hairpins 0.0226n
Length of a hairpin-loop 7.3766
Number of bulges 0.0095n
Length of a bulge 1.5949
Number of ladders 0.0593n
Length of a ladder (counted in the number of basepairs) 4.1887
Number interior loop 0.0164n
Length of a single loop within an interior loop 3.8935
Number of multiloop 0.0106n
Degree of a multiloop 4.1311
Length of a single loop within a multiloop 4.3686
Number of single stranded regions 18.1679
Length of a single stranded region 18.1353

formula of Table 1 to the length of the sequence allows the comparison of the predicted structure to
the behavior of an ezpected molecule. So the average structural behavior described by our formulae
serves as some sort of consensus structure. If the predicted structure differs too much for many
parameters, we should not rely on the prediction. Besides theory it is necessary to gain experience
in order to see whether these ideas work and/or which thresholds are adequate for the different
parameters. However, the positive experience of Knudsen et al. [18] and of Eddy et al. [5] with
respect to the prediction of secondary structures based on trained SCFGs (resp. covariance models)
give rise to be optimistic.

3 Investigating Biological Objects Based on SCFGs

In this section we will describe how the results from the previous section were computed. We will
proceed in two steps. First we will discuss a toy example in order to give details of the methodology
without stressing the presentation with complex formulae. Afterwards we will present the key steps
into the investigation of LSU ribosomal RNA molecules.

3.1 A Toy Example

Now we will present our method. In some sense it is the combination of several already known
concepts from different disciplines which for the first time are used to perform a structural analysis
for any kind of combinatorial object (which in our case are the RNA secondary structures). Fur-
thermore it is universal in the sense that it can be used with respect to any type of object which can
be represented as a (context-free) formal language. Therefore it should be of independent interest
and of relevance not only with respect to the application presented here and thus not only with
respect to computational biology. However, since the calculations that are necessary to compute
the results for the average shape of LSU ribosomal RNA molecules are rather complicated, we want
to explain the method using a small example without real application.

As already mentioned, the secondary structures are modeled as a certain kind of Motzkin words.
There, two paired bases are represented as a pair of corresponding brackets (- - -) somewhere within
the word, unpaired bases are represented as |. Since by definition, pseudoknots are impossible
within a secondary structure, the resulting representation is a correctly bracketed word where sym-
bols | are inserted at appropriate places. Figure 1 shows the graph representation of a secondary
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Figure 1: The graph representation of a secondary structure and the corresponding Motzkin word.

structure together with its representation as a Motzkin word w. If we forget about restrictions
for secondary structures such as for instance a minimal hairpin-loop length of three, the following
context-free grammar generates the language of all possible encodings (Motzkin-words):

fi=8—=5(9), fa=8—=15|, f3=8—e¢

Here ¢ is used to denote the empty word, i.e. the application of production S — ¢ deletes symbol
S in a sentential form. In order to train the grammars we have extracted from the database of
LSU ribosomal RNA secondary structures [29] a file with the corresponding encodings as a Motzkin
word. Additionally, we have implemented an Earley-Parser which for all words in the file computes
the derivation tree. The probabilities are determined by counting the number of applications of
each production-rule f in each derivation tree and dividing it by the total number of applied rules
having the source' Q(f). The observed probabilities are rounded to the second decimal place in
order to keep the toy example as simple as possible. We obtain the probability i for f; and f3
and £ for f,. By a standard procedure (see e.g. [10]), we translate the grammar together with the
probabilities into an equation for the corresponding probability generating function S(z,y). For
this purpose we mark each of the symbols in {(,),|} by variable z, the symbols | are additionally
marked by y which is needed to determine the behavior of unpaired bases. We obtain

F(S,Z,y) = 62(z7y)52 +61(Z,y)S+C()(Z,y) =0

with co(z,y) = izQ, c1(z,y) == %zy — 1 and cy(z,y) = i for the defining equation. Note that

for polynomial F'(S, z,y), S is the variable representing the generating function S(z,y) that we are
interested in. In case of such a simple example it would be a child’s play to solve the equation for S
in order to obtain a closed form representation of the generating function in question. However, for
our later applications this would be impossible because of complexity and we thus use a way which
will work in those cases, too. We will use the Newton polygon method as described in [10, 13] to
find the expansion of our generation function around its dominant singularity from the polynomial
F(S,z,y) only. From this expansion it will be possible to derive an asymptotic formula for the
coefficient at 2" using the O-transfer method. In order to make this article more self-contained we

!Note that the inside/outside algorithm which is normally used to train the grammars has a running time in O(n?)
while for non-ambiguous grammars our method runs in quadratic time.



first give a brief description of how the O-transfer method works.

Assume we have a generating function f(z) = Y -, fnz™ with f, > 0 for all n and we wish to
approximate f, for large n (in our case f, will be for instance the probability of a secondary
structure of size n). In the sequel we will use the notation [2"]f(z) to denote the coefficient at
" in the expansion of f(z) around 0. The basic principle of the method is the existence of a
correspondence between the asymptotic expansion of f(z) near its dominant singularities and the
asymptotic expansion of the coefficients f,,. Here, a singularity is called dominant if it is located
on the circle for convergence of f(z) or equivalent if it is a singularity of smallest modulus. It is
convenient to consider functions f(z) that are singular at z = 1, a restriction that entails no loss
of generality: If f(z) is singular at z = p~! and ¢(z) := f(z/p), then by the scaling rule of Taylor
expansions [2"]f(z) = p"[2"]f(z/p) = p"[2"]g(z), where g(z) is singular at z = 1. The method
applies to the so-called algebraic-logarithmic functions, i.e. functions whose singular expansions
involve logarithms and fractional powers. Two types of results are used. First, a catalogue of
coefficients of standard functions which occur in such singular expansions, so that the coefficients of
the main terms can be extracted. Second, suitable theorems which allow to extract the asymptotic
order of error terms involved. Both will just be presented without proof. We refer the reader
to [7, 9] for details. For our applications, only algebraic singularities can occur. Thus, the only
standard functions together with the asymptotic forms of their coefficients that we will use are
contained in the following table. A similar table with a lot more entries can be found in [9].

z
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The basic requirement for the method is that the asymptotic expansion of the function should be
valid in an area of the complex plane which extends beyond the disk of convergence of the original
series. This requirement is described by the notions of A-domain and A-analyticity which will be
introduced in the following definition.

Definition 1 ([9]) Given two numbers ¢, R with R > 1 and 0 < ¢ < T, the open domain A(¢, R)
is defined as
A(p,R) :=={z | || < R,z # 1, arg(z — 1) > ¢}.

A domain is a A-domain if it is a A($, R) for some R and ¢. A function is A-analytic if it is
analytic in some A-domain.

If a function f is A-analytic and its asymptotic expansion (including the error term) is valid for the
entire A-domain then we are allowed to transfer f’s expansion term by term into an asymptotic for
f’s coefficients; the error term of the expansion translates into an error term for the asymptotic.
More technically we have

Theorem 1 ([9]) Assume that f(z) is A-analytic and that it satisfies in the intersection of a
neighborhood of 1 and of its A-domain the condition

1@ =o (-2 (s =) ).
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Then
[2"]f(2) = o(n"~ ' (log n)”).

Here, o is one of the operators in {O, o}.

Analyticity in a A-domain is not a stringent requirement since the basic functions le’ exp(z),

—log(1l — z) and v/1 — z are all A-analytic and apart from a few degenerated exceptions the com-
position of these remains A-analytic.

We first consider F(S, z,1) , i.e. the generating function S(z, 1) which has as its coefficient at 2™ the
probability for a secondary structure of size n. There are two reasons why S(z, 1) might become
singular. First, the leading coefficient ¢s(z,1) of F(S,z,1) might vanish as a function in z. In
that case we have a reduction in the degree of F' with respect to S and hence a reduction in the
number of solutions. As z approaches one of these values, one observes that one or more roots
of F' become infinite. We thus speak of points at infinity in this case. Second, there might exist
choices zg for z for which F' has multiple roots with respect to .S. In that case different roots of the
equation coalesce as z approaches zy. Note that not all of those points are necessarily singular but
singularities of S(z, 1) can only occur if z is one of these points. Note further that these two are the
only possible reasons for a singularity of any function implicitly defined by a polynomial equation.
It is well known that all these points are given by the solutions of R(F'(S, z,1), s F(S, 2,1),S) =0
where R denotes the resultant. This equation has two solutions, namely 0 and 1, where 0 counts
twice. Since S(z,1) is a probability generating function, its radius of convergence is at least 1,
thus 0 cannot be a singularity. Therefore z = 2y := 1 is the dominant singularity in question.
Note that 2y is not a point at infinity which can be checked by setting z to zy within the leading
coefficient of F'(S, z,1). Since Newton’s polygon method describes a method to find expansions at
the origin, we must shift the dominant singularity to (0,0). For that purpose we determine the
solution of F'(S, zp, 1) = 0 which is given by S = 1 and continue with regarding F(Y + 1,2y — Z,1).
To this polynomial we apply Newton’s polygon method. Unfortunately, it is impossible to give a
precise description of this method in an extended abstract but we will show the main steps. The
first step is to construct the Newton diagram for Fy(Y,Z) := F(Y + 1,29 — Z,1) , i.e. the diagram
in the (Y, Z) plane where we plot a point at (i,5) whenever the coefficient at Y*Z7 is non-zero
and afterwards form the least convex polygon which contains these points. Figure 2 shows the
diagram for Fy(Y, Z). The polygon always has a (possibly broken) line which connects the points
on the axes nearest to the origin (this is the solid line in Figure 2). The possible exponents «

Y
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Figure 2: The Newton diagram for F;(Y, Z).
such that Y ~ ¢Z® for ¢ # 0 correspond to the negative reciprocals of the slopes of the segments
of this broken line. For each such « a polynomial equation constraints the possible values of the
corresponding coefficient ¢. For us, the only possible choice is o = % By solving Fi(cZ 12 7 ) for



¢ and setting Z = 0 afterwards (we are looking for an expansion around zero) we get ¢ = —2 and
thus the leading term of the expansion —2v/Z. A complete expansion is obtained by repeating the
process, which means deflating Y from its main term by way of the substitution ¥ — Y — cZ%.
Overall we find for the desired expansion

—VZ + 32 — 4237 + O(Z?).

By applying the O-transfer method (by our substitution Z = 1 — z holds) we find

" 3 1 3
[2"]S(z,1) ~ <1+8n> T \/W,n—)oo.
This formula gives the probability for a secondary structure of size n. The next task is to consider
the number of unpaired bases, which are marked by y within F'(S, z,y). We therefore compute the
first parital derivative of F(S, z,y) with respect to y taking into consideration that S is a function
in z and y (for details on that part of the method the reader is refered to [8]). Afterwards we set
y to 1. Denoting G := 0yS(z,y)|y=1, we find

L

1 1
2 [ [ _
22’ SG + 225—1— 2zG G

where S still is determined by F(S, z,1). By means of resultants we can combine both polynomial
equations yielding
Fy(G,z) = (42" —42) G® + (82 = 8) G+ 2 =10

for the quation which determines the first parital derivative of S(z,y) with respect to y at y = 1.
The treatment of this polynomial is similar. Its dominant singulatity is located as z = zg = 1.
But now, the singularity is a point at infinity and we thus substitute by Y2F»(1/Y,1 — Z) in order
to translate it into a singularity at the origin. The expansion of the resulting polynomial again is
determined by Newton’s polygon method. Afterwards we undo the substitution to get the following
expansion

1
VA

The application of the O-transfer method yields

—1+VZ+0(2).

2 B ﬁ VTN 2V n3

If we divide this asymptotic by that for [2"]S(z,1) we get an asymptotic for the expected number
of unpaired bases in a molecule of size n. This expected value is given by %n + % + O(n 1), thus
on the average there are about 50% of the bases unpaired. Note that from the mathematical point
of view, the result is only valid for n — oo. However, comparing the asymptotical results with the
exact coefficients of the corresponding generating functions proves that this expectation is precise
up to the first two decimal places even for values of n not larger than 200. This is the usual
observation when looking at asymptotics computed via the O-transfer method. If we compute
the corresponding statistic from our database we find that about 52% of the bases are unpaired;
our result would have been closer to this value if we had not rounded the trained probabilities.
However, our result is much stronger than a simple statistical result obtained from inspecting the
database in a traditional way, since we are able to introduce the size of the molecules as a variable
and prove the dependency of the parameter on the size. The assumption which is implicitly made
this way is that a context-free grammar provides a realistic model for the molecules. By the

1 1 1 1
210,52,y y1 ~ (— ) Loy



pumping property of context-free languages this assumption implies the existence of a selfsimilar
behavior within the molecules which for RNA secondary structures seems to be realistic. In order
to compute the variance we make use of the second factorial moment which can be computed from
the second partial derivative 855’ (2,y)|y=1 using the same methods. We find that asymptotically
the corresponding coefficient behaves like (% + %) \/g — %\/%,
by the asymptotic for [2"]S(z,1) and computing the variance from the first and second moment
leads to in as the asymptotical representation for the variance. Thus the number of unpaired bases

is not strongly conserved in the sense mentioned in the introduction.

3.2 Deriving the Results for Large Subunit RN A Molecules

As we have seen in the previous discussion, it is possible to investigate structural parameters of
RNA secondary structures by small and simple context-free grammars. However, the grammar is
part of the model, and different grammars, even if trained on the same database, provide slightly
different results. As a consequence, in order to get consistent results, we must use one single
grammar for all parameters that we want to quantify. Furthermore, it is not possible to restrict
our attention to parts of a grammar only in order to investigate the structural behavior. To make
this point clear, consider the stochastic context-free grammar with the following productions

n — o0o. Dividing this asymptotic

%:S—>(S), %:S—)B, %:B—HB, %:B—Mz,
and assume that we are interested in the expected length of runs of the symbol |, i.e. in the expected
length of subwords |* for maximal k. If we consider the entire grammar as in the previous section
we find that the expected length of an |-run is given asymptotically by 16.48528.... One might
think that it is sufficient to consider only that part of the grammar which is responsible for the
generation of the |-runs, i.e. the two B productions. However, the generating function for this sub-
grammar is given by 3_12 > and the resulting expected |-run length is equal to 2. As a consequence of
this discussion, we must determine all parameters using the same grammar without neglecting any
part of it. Thus we must use a grammar which distinguishes all substructures that we want to ana-

lyze. The following grammar G proved to be adequate (all capital letters are intermediate symbols):

fi=S — SAC, fo=S = C, f3=C = C|, fa=C — ¢, fs=A— (L), fe=L — (L), fr=L—- M
fs=L— 1, fo=L— |H, fio=L — (L)B|, fu=L — |B(L), fiz=B — B|, fi3=B — ¢,
fu=H — H|, fis=H — ¢, fis=I1 = |J(L)K|, fir=J = J|, fis=J — ¢, flo=K — K|,

foo=K — ¢, foo=M — U(L)U(L)N, foo=N — U(L)N, fo3=N — U, fou=U — U|, fos=U — &

The idea behind the grammar is the following: Starting at the axiom S a sentential form of the
pattern CACAC --- AC is generated, where each A stands for the starting point of a folded region
and C represents a single stranded region. Applying production A — (L) produces the foundation
of the folded region. From there the process has different choices. It may continue building up
a ladder by applying L — (L). It may decide to introduce a multiloop by the application of
L — M or an interior loop by the application of L — I. A hairpin-loop is produced by L — |H.
Additionally, the grammar may introduce a bulge by the productions L — (L)B| resp. L — |B(L)
where the two productions distinguish between a bulge at the 3’ resp. 5’ strand of the corresponding
ladder. An interior loop is generated by the production I — |J(L)K| where J and K are used to
produce the loops. The multiloop is generated by the productions M — U(L)U(L)N, N — U(L)N
and N — U, i.e. we have at least three single stranded regions represented by U, by additional
applications of the production N — U(L)N the degree of the multiloop can be increased. All



Table 2: The probabilities for the productions of our grammar obtained from training it on a
database of large subunit ribosomal RNA secondary structures.

rule f prob. p; rule f prob. p; rule f prob. p; rule f prob. p; rule f prob. p;
f1 0.8628 fa 0.1372 f 0.9477 fa 0.0523 fs 1.0000
fs 0.7612 fr 0.0402 fs 0.0662 fo 0.0941 J10 0.0207
fi 0.0176 fi2 0.3730 fi3 0.6270 f1a 0.8644 fis 0.1356
f16 1.0000 fir 0.7401 fis 0.2599 f19 0.7461 f20 0.2539
fa1 1.0000 f22 0.5149 f23 0.4851 fo4 0.8137 fo5 0.1863

the other production-rules are used to generated unpaired regions in different contexts. We use
different intermediate symbols in all cases since otherwise we would get an averaged length of the
different regions instead of a distinguished length for all substructures considered.

Like for the toy-example, the next step is to adapt the probabilities for all the productions to the
database. Again this is done by our Earley-parser. Table 2 presents the resulting probabilities. The
system of equations which is connected with grammar G can be translated into a single equation
using resultants or Groebner bases. Afterwards, we can proceed in exactly the same way as for the
toy-example, i.e. determine the dominant singularity and compute the expansion of the generating
function associated with the equation using Newton’s polygon method. Afterwards this expansion
is translated into an asymptotic for the coefficients of the generating function. By marking different
symbols resp. the application of different productions by different variables it becomes possible to
investigate numerous structural parameters of the secondary structures. For example, if we want
to count the number of hairpins, we just have to mark the application of production L — |H by an
additional variable like we did for symbol | for the toy-example. The results obtained this way were
already presented in Table 1. Again, a comparison of our formula to statistics computed from the
database proves that our results fit nicely with the natural behavior of the molecules. For example,
the average length of a hairpin-loop observed in the database is given by 7.3748 compared to 7.3766
from Table 1. The average number of hairpins in the structures of the database is given by 52.19
which is rather close to 52.47 which we obtain by setting n to the average observed length 2321.58
within our formula. Of course these results are specific for ribosomal RNA since the database which
was used to train the grammar was entirely made of LSU rRNA data. However, the methodology
used is completely independent from the source of the data. Thus one can think of preparing a
database from different types of RNA in order to get a model for secondary structures themselves
or to build a database for other specific types of RNA such as tRNA [27] or RNASE P [2]. As
already mentioned, this was done by the author. The results obtained are rather similar to those
presented before, however, due to lack of space they are not reported here in detail. Furthermore,
the method can be used to investigate completely different objects. For example, the author has
made positive experiences in analyzing the trie data structure which is intensively used in computer
science. As a consequence, it should be possible to apply the ideas presented here to other objects
of biological origin, too.

4 Conclusion

In this paper we have shown how to derive expectations and higher moments related to structural
parameters of RNA molecules. The model used for this purpose is rather realistic since it is derived
from a database of real molecules. Furthermore, the methods used are general in the sense that
they can be applied to any sort of combinatorial objects which can be modeled based on a context-
free language. Thus there should be future applications in different areas such as computer science
(analysis of algorithms) or bioinformatics.
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