Step 1: Let V; := {1} and T; the subtree of T consisting only of
node 1. Alignment AM") then is equal to S;.

Step 2: For / from 1 to k — 1 repeat the following steps:

(a) Choose any node s ¢ V;, neighbored to a node r € V; in T.
Let Vi, := V;U{s} and add s and edge {r,s} to T; = Tit1.
(b) Compute optimal alignment A of S, and row AW

alignment A() corresponding to S,. As §(—, —) =0 holds, the
score of an optimal alignment of 5S¢ and S, is equal to the score of
an optimal alignment for S, and A(rf).

(c) For each gap added to A by A add a gap column to A
Finally add the row of A corresponding to S. to the modified .A")
creating AU+,

Step 3: Output alignment A%,

Observations:

» The algorithm obviously guarantees consistency for the new
edge {r,s} and adding further edges doesn't change
consistency of previously added edges as only gap columns

are added.

» As a tree with k nodes always has k — 1 edges
= the loop in step 2 will process each edge of the alignment
tree eventually. O

Special case: Alignment tree for S = {S;,..., S} is a star (ie. a
tree with center ¢ and k — 1 leaves, each connected to ¢ by an edge).
This special case is often called star alignment. The algorithm for
the star alignment first determines the center ¢ from the given
words S; as follows:
» For each 1 </ < j < k determine similarity sim(S;,S;) of S;
and S; according to the scoring function used.

» Choose ¢ to be the word w with minimal sum

Y ses sim(w, S).

\
5

o


http://www.echalk.de
http://www.inf.fu-berlin.de/~fland
http://www.inf.fu-berlin.de/~knipping
http://www.inf.fu-berlin.de/~rojas
http://www.inf.fu-berlin.de/~tapia

Then T is the star with center ¢, leaves S\ {c} and the previously
determined similaryties as edge labels. Afterwards the algorithm
from the previous proof is used to create a multiple alignment
consistent with 7. This method is called center star method.

It should be obvious that this method does not create an optimal
alignment for the input. The question is how good the created

- . ———
alignment is.

Definition
A scoring function 0 : (¥ U {—})* — Q is called good if it
satisfies the following conditions:

1 (Vae (X U{-}))(d(a a) =0);
2. (Va,b,c € (xU{—=}))(0(a,c) <d(a, b) + d(b,c)) (triangle
inequality).
This definition immediately leads to:
Lemma
If 0 is a good scoring function,
6(a,b) >0

for all a,b € (XU {—}).

Proof: 0= 4(a,a) <d(a,b)+ d(b,a) =" 24(a, b) for all
a,be (XU{-}).

* We required p(a, b) = p(b, a) already for pairwise alignments O]
Lemma 9
Let 6 a good scoring function, S = {c,S1,...,S,} a set of words

and T = (V, E) the star with center c and leaves S, . . ., Sy. Let

(c',SM ... S a multiple alignment of S compat.':ble with
T.Then forall i,j € {1,... k}

6(SD, S < 5(SD, )+ 6(c’, SY) = sim(S;, ¢) + sim(c, S;)

holds.



Proof: As the score §(S(), SU)) of the pairwise alignment is the
sum of the scores of the pairs in all columns, the inequality follows
immediately from the triangle inequality continued on 0.

The equality follows from the fact that the pairwise alignments of
S; and c resp. ¢ and S; induced by the multiple alignment
(c’,S0, ... S() are optimal and §(—, —) = 0. O

Theorem

Let 6 a good scoring function, dsp the SP score induced by 6 and
S =1{51,...,5,} a set of words. Furthermore let simsp(S) the
SP score of an optimal multiple alignment for S. Then the multiple
alignment (SW), ... S constructed by the center star method
satisfies

2
55,0(5(1), cee S(R)) < (2 — E) . Simsp(s]_, Ceey Sk)

Proof: Let (SM), . .. ,3“‘_)) an optimal multiple alignment of S
wrt. SP scoring i.e. 6sp(SWM), ..., S} = simsp(Sy,. .., S). We
define

(M, sWy = 3" Y 6(sW SU)) = 2.65p(SM, ... 5M)

1<i<k 1<j<k
and
(SO, W)= Y Y 6(50 50)) = 2.65p(SM, ... 5M)
1<i<k 1<j<k
=2 - simsp(S).

Then the claim follows from

v(SW, . .. s) 2
- 1 :_ < 2_ - .
v(S, ... Sy — ( k)




m = rtrélg Zsfm(s, t) = Zsim(,q, s) = Z sim(c, s).

seS seS seS\{c}

—

WLOG we assume ¢ = S,. Lemma 5 then assures

v(sW, ... sk
_ Z Z 5(5(:’)’5(])) < Z (sim(S;, ¢) + sim(S;j, ¢))

1<i<k1<j<k 1<i<k
R 1<j<k

— Z Z sim(S;, c) 4 sim(S;, ¢))

1<i<k—11<j<k—1

— Z Z sim(S;, c) + Z Z sim(S;, ¢

1<i<k—11<j<k—1 1<i<k—11<j<k—1
= 2:(k—1)- Y  sim(S,c)=2-(k—1)-m
1<i<k—1

On the other hand

V(E,.50) = 3 Y §(30,50) > 30 sim(s;, S))

1<i<k 1<j<k 1<i<k 1<j<k
> k- E sim(c,S;) = k- m,
1<j<k

as each choice of / results In

Z sim(S,-,Sj) > Z Sfm(C,-S_,')

1<j<k 1<j<k

since ¢ := argmin,_s » ¢ sim(t,s). This leads us to

v(SW, ..., SW)  2.(k—1)-m

_ > )< o
v(SM, ..., Sy — k-m

x| N



We have shown that for good scoring functions and SP scoring
the center star method is an (2 — %)—approximation algorithm for
the multiple alignment of k words.

The center star method is, however, not only suitable for SP
scoring. One can show that when scoring based on consensus
words it Is a 2-approximation if using good scoring functions.

Sequencing

Physical Mapping (first approach for sequencing): Break down
many copies of the DNA molecule in question in many overlapping
fragments.

= Order in the original molecule is lost.

Target: Determine a physical map describing the placement of
the fragments. This is done using markers, being short given base
sequences.

Definition

Let D a DNA sequence. A physical map for D consists of a set M
of markers and a function p : M — 2", giving all occurrences of m
in D (via positions) for each marker m € M. Creating a physical
map is called mapping.

DMA sequence D

my mz m3

T

€ p(m)

markers



Restriction site mapping: Use restriction enzymes to create the
fragments. The restriction sites are used as markers.

Method: Double digest method

Input: A DNA molecule D to be mapped and two restriction

enzymes A and B with disjoint restriction sites. 3 O
Steps: g g

1. Create three copies of D. W

2. In three different test-tubes use enzyme A, enzyme B and
enzymes A and B resp. on one copy of D each. Now each
test-tube contains an unordered set of fragments of D.

3. Determine length of these fragments to create multisets (Here

[x. /] denotes x appearing / times)

A(X), X € {A, B, AB}, where

A(X) = {[(, ] € N? | digestion of D by enzyme(s) X
created i fragments of length (}.

We consider the idealized case of complete digestion.
Goal: Derive arrangement of fragments from sets A(X).

To do this we look for arrangements 7 and ¢ of the fragments in
multisets A(A) and A(B). These arrangements should be such
that the positions where fragments end induce just the fragment
lengths in A(AB).

(L | }
0 5 7
¢ | | |
0o 2 9
A(AB) | | | | |




Definition

Let X :={[x1, i],. ..., [xn, in]} be a multiset over N. Let
m=(X,....%;,), | := > {-.-, Ik, be a permutation of the
elements of X. We define

Pos(m) := {0, x;,, Xj, + Xj,, - - - , Z X, }

1<k<I

as the position set of permutation w. For Y = {y1,...,y},
vi € Ng, 0 <71 </, and y; < y» < --- <y, we define the multiset

Dist(Y) = {[0. k] | 1{7 | yivs—yil = EAT € [1: 1—1]}| = k € NY.
We call Dist(Y') distance set of Y.

Note: Dist(Pos(mw)) = X for each permutation 7 of the elements
in X.

Definition
Let A, B and C multisets over N. Furthermore let 7 (resp. ¢) an

arrangement of the elements of A (resp. B). The pair (7, ¢) is
called feasible for A, B and C, If

Dist(Pos(mw) U Pos(¢)) = C.

Double digest problem (DDP): Given multisets A, B and C.
Determine a feasible pair of arrangements of the elements in A
and B.

Requirement: The elements of the three sets have the same sum.
Brute force: Test all permutations of A and B.

= In the worst case (each element occurs only once in A resp. B)
(|AD)! - (|B])! many alternatives.



Theorem
Dec-DDP is NP-complete

Proof: Problem is in NP, as it is obviously possible to test in
polynomial time, if a pair (7, ¢) of permutations is a feasible
solution.

Completeness: Reduction from set partition to Dec-DDP.

Set partition problem: Input: Set X of naturals. Is there a
partition of X into sets Y and Z whose elements have the same
sum?

Details: See exercises.

Further problem: The solution for a given input is not unique. If
e.g. (m, ) is a feasible solution, (7", ¢") is also feasible, where x"
denotes the reverse order of x. There are also instances with
additional solutions.

Method: Partial digest method
Input: A DNA molecule D to be mapped and a restriction
enzyme A.
Steps:
1. Generate multiple copies of D.

2. Use enzyme A on D in several experiments with different
durations. Each results in a set of fragments.

3. Determine the length of these fragments and collect all the
lengths in a multiset A,(A).



Idealised model of data:

Definition

Let D a DNA molecule and ¢y, ..., c, the possible restriction sites
of restriction enzyme A in D, ¢c; < ¢ < --- < ¢, and ¢ = 0,

Coi1 = |D|. We call set A,(A) determined with the partial digest
method ideal, Iif

Ap(A)
{[6. K| {(i.)eN? | g—ci=(N0<i<j<n+1} =keN}

holds, i.e. if the length of each possible fragment is counted
exactly once in A,(A).

Can we determine the arrangement of the fragments from an ideal

set A,(A) efficiently?

We abstract A,(A) as a multiset of (]) elements, where n — 2 is
the number of restriction sites of A in D.

Definition
Let A be a multiset of (’2’) elements from N and let
P = {xi,...,x,} be a set of elements from Ny where

0=x31 <x < ---<x,. Wecall such a set P a point set and
define the multiset

Dist,(P) :=
(6K | () €N | ;g —x = (AL < i <j<n}|=keN)

of all pairwise distances of points in P. The point set P is called
feasible solution for A, if

Dist,(P) = A

holds.



Partial digest problem (PDP): Given a multiset A with (7)
elements from N determine a point set P that is a feasible
solution for A, or 0, if there is no such P.

Intuitively the partial digest problem thus is to reconstruct the
position set P of restriction sites from the multiset A of fragment
lengths.

Difference to DDP: Because of partial digestion overlaps of
fragments are possible.

Characterizing feasible solutions:

Definition
Let A be a multiset of (’2’) elements from N and let
P:{X]_’...’Xn}, X.,'ENO']_S!-SHFOZX1<X2<...<X”3

feasible solution for PDP with input A,(A). For 1 < i < n we
define

levela(i) =
{[.Kl | EN| X —x;=(A1<j<n—i}|=k}CA
g
as the multiset of distances of end points in P having an index
distance of 1I.

levela(n — 1)

levela(n — 2)

levela(3) U

levela(2) T _—

levela(1) - —

P={x,%,...,%} | } - } —_— . } —
0=x X2 X3 Xa X5 Xe X7 Xp—3 Xp—2Xp—1Xn




Let A be a multiset of (’2’) elements from N and let
P = {x1,x2,...,x,} be a feasible solution for PDP with input A.
We make the following observations:

> |levela(i)| :==n—1i.
» In our biological motivation /evels(1) is the multiset of
fragment lengths whose fragments are restricted by

neighbored restriction sites (or ends of the DNA molecule).
Thus we call the elements of levels(1) as atomic distances.

> levelp(n — 1) = {Ymax} Where ., := max(A). Thus
levels(n — 1) only contains the length of the DNA sequence.

» Considering the union of multisets
levela(1) U levels(2) U - -+ U levels(n — 1) = A,

holds.

Brute force: Consider all of the maximal (n@l) possibilities of

choosing atomic distances and check their (n — 1)! arrangements
for feasibility.

Notation: We define

o(X.y) =16k | [{xe X | [x —y| =} = k e N}
T rwkt

for X = {x1,...,x,} a set of naturals and y a natural.

n

Assumption: An input for PDP has (2) n € N, many elements

as otherwise there is no solution. v\ S
( (1 ]
Input: A multiset A of (7) elements from N. | — AR |
X
Steps: (: % V4 XPS A\?‘)

1. Sort elements in A by size. 7

. S := £ (empty stack).

2
3. Ymax := max(A); X == {0, Ymax }; A= A\ {Vmax }-
4

. Place further elements by calling recursive procedure
Plaziere(X,A,S), working as follows: (see handout)



Example: A = {[1,1],[2,1],[3,1]. [4,1], [5.2], [7,2].[9,2], [10, 2],

[12.1], [14. 1], [19,1]}.
0 19
0 12 19
(:) 1:2 1:4 1:9
(:) 9 1:2 1:4 1:9
0 7 14 19
0 7 9 12 19
0 7 910 12 19

{0,9,12,14,19} ¥ {0,7,10,14,19}

{0,7,9,10, 14,19}
dead end, no placement at
left (resp. right) end possible.

A Backtracking, saved
: state is restored.



