
On the Lexicographical Generation of

CompressedCodes

Markus E. Nebel

Technische Universität Kaiserslautern, Fachbereich Informatik,
Gottlieb-Daimler-Straße, 67663 Kaiserslautern, Germany

Abstract

A certain class of algorithms for the lexicographical generation of combinatorial
objects can be considered as working on the code tree representation of the objects
processed. Then the strategy used by the algorithms in order to find lexicographical
successors corresponds to a special kind of tree traversal. If the encoding used
is redundant in the sense that the code tree has nodes with only one successor,
compression becomes possible which allows for a speed-up in the lexicographical
generation. In this note we analyze the average running time saved when compression
is applied. For this purpose we consider random code trees within the model of simply
generated trees together with the compression as used for the trie and the PATRICIA
data structure. We prove general results which quantify the average savings only
depending on the generator Θ and the size of the family under consideration. As
an example, those results are applied to consider random encodings over an s-ary
alphabet. Finally, we comment on connections of our findings to the problem of
ranking words of a given language.

Key words: Analysis of algorithms, combinatorial problems, lexicographical
generation

1 Introduction

It is common practice to generate
combinatorial objects by using bijec-
tive methods, e.g. by encoding the
objects in a formal language L [2].
In such a case we can enumerate all
objects of a given size by generating
all words in L lexicographically. In

Email address: nebel@informatik.uni-
kl.de (Markus E. Nebel).

[8] R. Kemp has presented a quite
simple class of algorithm for this
purpose which allows for a detailed
average-case analysis in a unified
way. In order to compute the lexi-
cographical successor ls(w) ∈ L of
word w ∈ L Kemp’s algorithms pro-
ceed in the following way:

(1) w is scanned from right to left
letter by letter until the first
symbol of the shortest suffix v
with w = uv and ls(w) = uv′,

Preprint submitted to Elsevier Science 14 September 2006

v �= v′, has been found.
(2) The new suffix v′ of ls(w) = uv′

is computed and attached to the
right of u.

One example of such an algorithms
is the well-known method of Zaks
[17] for generating t-ary ordered
trees. Assuming that no knowledge
on u is needed in order to compute
the suffix v′, the running time of
such an algorithm is always propor-
tional to the lengths of the suffixes
to be changed. Furthermore, assum-
ing that all words to be generated
are of the same length (i.e. we are
considering a block code) and are
equally likely, it turns out that all
the s-th moments about the origin of
the random variable describing the
cost of a lexicographical generation
can be expressed by means of |L|
and the number of different prefixes
of length k of the words in L [8]. Be-
side other applications, this general
result allowed for the analysis of the
well-known algorithms by Ruskey
[16] and Zaks for the lexicographical
generation of trees.

In this note we will shed more light
on this class of algorithms by taking
a different perspective: The set of
words L to be generated lexicograph-
ically is assumed to be represented
as a code tree with |L| leaves. Each
edge of this tree is marked by a sin-
gle symbol; we assume a left-to-right
ordering of edges according to the or-
der on the alphabet which is used to
lexicographically order the language,
small edges (symbols) left. Concate-
nating the symbols on a path from
the root to a leaf yields a word in L.
Using this representation the above

strategy for finding the lexicographi-
cal successor of a word w ∈ L is em-
ulated by traversing the unique path
form w’s leaf towards the root up to
the first internal node v where the
edge e used by our traversal is not
the rightmost edge of v. We then tra-
verse the edge right to e heading for
the leaves always continuing with the
leftmost edge until we reach a leaf.
This leaf represents the successor in
question. Of course, the algorithms
as proposed by Kemp do not work
on code trees but have to identify
the suffix to be changed by scanning
a word from right to left, computing
the words new suffix (which makes
the word to become the successor)
based on the knowledge that was
collected during this scanning. How-
ever, having the image of a code tree
in mind allows for an elegant analysis
of all algorithms working this way.
The key observation for this analysis
is the following: If we generate all
words in L (represented by a code
tree) proceeding in the way just de-
scribed, each edge will be traversed
exactly twice. Based on this obser-
vation it will be possible to analyze
the expected amount of work to be
saved by compressing the code trees
in two different ways:

(1) Trie compression: Each leaf be-
comes a child of its first pre-
decessor with a degree larger
than 1 (which is equivalent to
the deletion of linear lists at
the leaves). The labels of the
deleted edges are concatenated
and attached to the leaf’s in-
going edge. This compression
transforms the code tree into a
trie structure [9,14].

2

(2) PATRICIA compression: All
unary nodes of the tree are
deleted, collecting labels at the
remaining edges. By this com-
pression the code tree becomes
equivalent to a PATRICIA
search-tree [9].

In both cases we will assume that
the code tree to be compressed is
randomly taken from a family of sim-
ply generated trees. We will prove
precise formulæ for the expected
amount of work saved (which is ob-
viously given by twice the expected
number of edges deleted during com-
pression). In any case the results can
be expressed by means of the number
t(α, β) of trees in the family having
α nodes of which β are leaves.
We shall mention that according to
our point of view compression of
codes is not an algorithmic task but
is left to the designer of an algo-
rithm. For instance when working
with tree-like structures an easy and
well-known encoding is given by the
semi Dyck-language, representing
a tree by means of a bracket term
[17]. However, the code tree for the
semi Dyck-language has many unary
nodes giving rise to notable speedups
by compression. Thus, instead of us-
ing the first encoding at hand, the
designer should think of compress-
ing the code according to the trie
or PATRICIA compression strategy
before preparing her algorithm.
Obviously, PATRICIA will never re-
sult in a code tree worse than the one
generated by the trie compression.
However, for the algorithm used for
the lexicographic generation (which
do not work on code trees) it might
be much easier to only omit unary

nodes at the leaves of a code tree
than to omit them all. Therefore it
makes sense to analyze both com-
pression methods and to compare
their influences.
According to the author’s knowl-
edge, this is the first paper proposing
an improvement of Kemp’s general
algorithm or more precisely of the
way we should apply Kemp’s general
concept. However, there are follow
up papers to [8] like e.g. [4,6] or [12]
which in some sense also take ad-
vantage of some kind of code trees
namely in order to generate random
objects of a given class (the latter
is an intensively studied subject, see
[2,5,10,15] to get access to the related
literature). There the main idea is to
generate a path from the root to the
leaves and thus the encoding of an
object based on a randomly chosen
rank which is used to decide the next
edge to be taken at a time (given an
ordered set U and a rank i, the pro-
cess of computing the i-th object of
U is called unranking). Decisions are
based on subtree sizes which are de-
termined e.g. by using decomposition
rules like unions or concatenations
(products) that apply to the encod-
ing in use [12]. That way it becomes
possible to automatically translate
the decomposition rules of an encod-
ing into an unranking algorithm used
for the random generation of objects.
Literature also deals with the reverse
process called ranking which consists
of computing the rank of a given ob-
ject. In section 3.3 we will comment
on a connection of our findings to the
problem of ranking lexicographically
ordered words of a given language.

3

2 Additive Weights of Simply
Generated Trees

Let T = (I, L, r) be an unlabeled
rooted planar tree with the set of in-
ternal nodes I, the set of leaves L and
the root r ∈ I; T is said to be a λ-
tree if the root r is of degree λ. The
weight ω(T) of the tree T is recur-
sively defined as follows [7]:
Let g, ai, fi : N

3
0 → R, i ∈ N0, be

given mappings. If T is the one-node
tree, then ω(t) := g(0, 1, 1); if T =
(I, L, r) is a λ-tree with the subtrees
Ti = (Ii, Li, ri), 1 ≤ i ≤ λ, then

ω(T) := g(λ, n, m)

+
∑

1≤i≤λ

(ai(λ, ni, mi)ω(Ti)

+ fi(λ, ni, mi)),

where n := |I ∪ L|, m := |L|,
ni := |Ii ∪ Li| and mi := |Li|,
1 ≤ i ≤ λ. Many well-known param-
eters of trees can be expressed in this
framework; prominent examples are
the internal path length or the num-
ber of paths between leaves. This
framework also allows for the rep-
resentation of the number of edges
deleted during our compressions and
thus provides a representation for
the amount of work to be saved dur-
ing the lexicographical generation:
Trie compression: With g(λ, n, m)
:= 2 · δλ,1 · δm,1, ai(λ, n, m) = 1 and
f(λ, n, m) = 0, for δ Kronecker’s
symbol, ω(T) is equal to twice the
number of edges belonging to a lin-
ear list at a leaf of T . We will use
ωt(T) to denote this weight of tree T
in the sequel.
PATRICIA compression: With

g(λ, n, m) := 2 · δλ,1, ai(λ, n, m) = 1
and f(λ, n, m) = 0, ω(T) is equal to
twice the number of unary nodes in
T and thus equal to twice the num-
ber of edges that are deleted during
a PATRICIA compression of T ; we
will use ωp(T) as notation for this
weight throughout this paper.
According to [13] a family F of
rooted planar trees is called simply
generated, if the generating function
E(z) =

∑
n≥1 t(n)zn of the number

t(n) := |Fn| of all trees T ∈ F with n
nodes satisfies a functional equation
of the form E(z) = z ·Θ(E(z)). Here
Θ(y) := 1 +

∑
λ≥1 cλy

λ is a regular
function of y when |y| < R < ∞.
In [1] Aldous pointed out that there
is a natural correspondence between
simply generated random trees and
Galton-Watson branching processes
conditioned on size.
For families of simply generated trees
the analysis of additive parameters
as defined above is well understood.
When only the total number of nodes
in the trees is used as a parameter,
[7] provides general results for the
expected additive weight of simply
generated trees which could be ap-
plied for the analysis of PATRICIA
compression; the choice of g in case
of the trie compression is not in the
range of application of those results.
Furthermore, using only a single pa-
rameter to specify the size of a tree
makes no sense in our context. Since
we have to allow unary nodes, fixing
only the number of leaves of a tree
would give rise for an infinite num-
ber of possibilities; fixing only the
number of internal nodes or the to-
tal number of nodes makes no sense
since those numbers are rather unre-
lated to the number of leaves of the

4

tree (which is the interesting param-
eter for our studies). Therefore we
decided to consider both as parame-
ters, the tree’s total number of nodes
α and it’s number of leaves β. In
this way it is possible to regard the
quotient ρ := α/β which can be in-
terpreted as kind of redundancy. To
handle this setting, we are looking
for bivariate generating functions in
which all nodes are counted by one,
all leaves by an additional variable.
To make those generating function
available we need a slight modifi-
cation of the above definition: For
t(α, β) the number of trees in F hav-
ing α nodes in total of which β are
leaves, we define the enumerator

E(z, v) :=
∑

α≥1,β≥1

t(α, β)zαvβ.

Now F is called simply generated if
E fulfills

E(z, v) = z · Θ(E(z, v), v) (1)

for Θ(y, v) := v +
∑

λ≥1 cλy
λ. At this

time we do not need any regularity
condition for Θ; this becomes only
necessary in order to derive asymp-
totic results.

3 The Expected Cost for a Lex-
icographical Generation

3.1 General Results

To analyze the cost for the lexico-
graphical generation (measured by
the number of edges traversed), we
first observe that any code tree with

α nodes has exactly α − 1 edges,
hence the number of edge-traversals
needed to generate all β words repre-
sented by the tree is equal to 2(α−1)
(and thus independent of β).
To investigate the effect of PATRI-
CIA compression, let F be simply
generated by Θ(y, v), let E(z, v) be
F ’s enumerator, and let ωp(T) denote
the weight counting twice the num-
ber of nodes in T deleted by PATRI-
CIA compression. Denoting by F (λ)

all the λ-trees of family F we find for
Cp(z, v) :=

∑
T∈F ωp(T)zη(T)v�(T)

Cp(z, v) =
∑
λ≥1

∑
T∈F(λ)

ωp(T)zη(T)v�(T)

=
∑
λ≥1

cλ

∑
T1∈F

· · ·∑
Tλ∈F

(2δλ,1 + ωp(T1) +

. . . + ωp(Tλ))z
1+η(T1)+...+η(Tλ)v�(T1)+...+�(Tλ)

= 2zE(z, v)c1 + zCp(z, v)Θ′(E(z, v)).

Hence we conclude

Cp(z, v) =
2zE(z, v)Θ′(0)

1 − z · Θ′(E(z, v))
. (2)

Here 1 Θ′(y) is used to represent
∂
∂y

Θ(y, v) and η(T) (resp. 	(T)) de-

notes the number of nodes (resp. leaves)
of T . From E(z, v) = z ·Θ(E(z, v), v)
we can conclude that E ′(z, v) :=
∂
∂z

E(z, v) = E(z,v)
z

/(1−z·Θ′(E(z, v)))
holds. Thus (2) turns into

Cp(z, v) = 2z2Θ′(0)E ′(z, v). (3)

1 Because v only occurs as an addi-
tive term within Θ(y, v), v always dis-
appears when taking partial derivatives
with respect to y.

5

For ωt(T) the weight according to the
trie compression and

Ct(z, v) :=
∑
T∈F

ωt(T)zη(T)v�(T)

we find

Ct(z, v) =
2z3Θ′(0)v

1 − z · Θ′(0)
· E ′(z, v)

E(z, v)

=
2zv · Θ′(0)

1 − z · Θ′(0)

∂

∂v
E(z, v).(4)

The first equality results from a de-
composition of Ct(z, v) according to
the different root degrees λ as done
for Cp(z, v) above and the equalities
∂
∂v

E(z, v) = z
1−z·Θ′(E(z,v))

= z2E′(z,v)
E(z,v)

which are direct consequences of (1).
The second equality results from
those equalities too. Using the repre-
sentations (3) and (4) of our gener-
ating functions we can prove:

Theorem 1 Let F be a family of
simply generated trees and let all trees
in F with α nodes of which β are
leaves be equally likely. The expected
number of edges traversed for the lex-
icographical generation of a random
language L represented by a random
tree T in F (considered as a code tree
for L) is given by

2(α − 1)

if T is not compressed, it is given by

2(α − 1) − 2β

t(α, β)

× ∑
1≤i<α

Θ′(0)i · t(α − i, β),

if T is compressed according to the

trie compression, and by

2(α− 1)− 2Θ′(0)(α − 1)t(α − 1, β)

t(α, β)
,

if T is compressed according to the
PATRICIA compression.

Proof: From the discussion above it
is obvious that for an uncompressed
code tree T the expected number of
edges in question is given by 2(α−1).
Thus, by linearity of expectations,
it is sufficient to subtract twice the
expected number of edges which are
deleted during compression from
2(α − 1) in order to consider the ef-
fect of compressing the code trees.
For the PATRICIA compression the
total number of edges deleted in the
trees in F having α nodes and β
leaves is given by the coefficient at
zαvβ of Cp(z, v). Using [zαvβ] to rep-
resent the operator which determines
this coefficient we find from (3)

[zαvβ]Cp(z, v) =

2Θ′(0)[zα−2vβ]E ′(z, v)

= 2Θ′(0)[zα−2vβ]

× ∑
n≥1
m≥1

n · t(n, m)zn−1vm

= 2Θ′(0)(α − 1)t(α − 1, β).

Assuming a uniform distribution for
the trees in F implies the denomina-
tor t(α, β) which shows up in the the-
orem in order to take expectations.
For the trie compression we have to
determine [zαvβ]Ct(z, v) for which we
find from (4)

[zαvβ]Ct(z, v)

6

=2
∑
k≥1

Θ′(0)k[zα−kvβ−1]
∂

∂v
E(z, v)

= 2β
∑

1≤i≤α

Θ′(0)i · t(α − i, β).

Here the first equality holds due
to the expansion z · Θ′(0)/(1 − z ·
Θ′(0)) =

∑
k≥1 zk · Θ′(0)k and the

denominator t(α, β) of the theorem
results from taking expectations. �

3.2 Example of Use

We consider simply generated code
trees over an s-ary alphabet. In this
case we have

(
s
k

)
choices for an in-

ternal node of degree k since the k
outgoing edges have to be marked
by k different but arbitrarily cho-
sen symbols taken from an alpha-
bet of size s. Accordingly, Θ(y, v) =

v +
∑

1≤k≤s

(
s
k

)
yk = v + (1 + y)s − 1

is the corresponding generator where
the term v represents the possibility
of a leaf and each of the summands(

s
k

)
yk stands for the

(
s
k

)
different

choices for an internal node of degree
k. We apply Lagrange’s inversion [3]
in order to get an exact representa-
tion of the coefficient [zα]E(z, v). In
this way we find

[zα]E(z, v) =

1

α

∑
k≥0

(
α

k

)(
sk

α − 1

)
(v − 1)α−k.

It is now an easy task to extract the
coefficient at vβ from this representa-
tion. In the case of s = 2 the resulting
closed form representation of t(α, β)

is given by 2α−2β+1

β

(
α−1
2β−2

)(
2β−2
β−1

)
. Con-

sequently, the expected number of

edges which needs to be traversed
in case of a PATRICIA compressed
code tree is given by

4β − 4.

In case of the trie compression we
have to traverse

2
(β − 1) (2 β − 1 + α)

2 β − 1

many edges on the average. For
α = βρ, the quotient of both results
(the case of PATRICIA compression
taken as the denominator) evaluates
to 1

2
+ βρ

2(2 β−1)
. As a consequence,

both compressions lead to the same
complexity for a lexicographical gen-
eration in case of a minimal redun-
dancy of ρ = (2β−1)/β (in that case
both algorithms do not change the
code tree’s structure). As a function
of ρ, this quotient (or graphically
speaking the drawback of the trie
compression) grows linearly with a
slope of at least 1/4 (where this lower
limit results from taking β → ∞).

At this point we know how much a
compression of the different kinds
would speedup our algorithm on av-
erage. For any special case it would
now be necessary to adapt the algo-
rithm to the changes of the encoding
implied by the compression – which
might by a complicated task.

3.3 Further Implications

A problem similar to the lexico-
graphic generation is that of ranking
words of a lexicographically ordered
language. Having our code tree rep-
resentation of languages in mind the

7

general pattern for computing the
rank of w ∈ L as proposed by [11] is
the following:

• Traverse L’s code tree starting at
the root; r := 0;

• For a node v on level k take the
edge corresponding to the k-th
symbol of w;
if this is the i-th edge of v then set
r := r + si−1;
STOP when there is a unique path
to a leaf.

Here, si denotes the size (number of
leaves) of the node’s i-th subtree; at
the end of the computation r yields
the rank of w (which for example
might be used in order to store the
corresponding combinatorial object
in a database using default data
types viz natural numbers).

A moment’s reflection shows that
the edges traversed for computing
the rank of all words in L are those
that remain in the code tree for L
after trie compressing the tree. How-
ever, edges might be traverse several
times while ranking the words in L;
in detail, an edge leading to k leaves
is used exactly k times. Thus, consid-
ering the additive weight ωr(T) with
g(λ, n, m) := m, ai(λ, ni, mi) := 1
and fi(λ, ni, mi) := 0, 1 ≤ i ≤ λ,
together with ωt could be use in or-
der to study the expected cost for
ranking a random simply generated
tree: the weight ωr(T) overestimates
the price payed for ranking all words
in L by |L| plus the number of edges
deleted by a trie compression, which
is given by 1

2
ωt(T), T the code tree

of L.

4 Conclusions

In this note we have considered the
lexicographical generation of lan-
guages represented by code trees. We
have considered simply generated
families of (code) trees in an extended
framework assuming a uniform prob-
ability distribution to derive our re-
sults. It should be mentioned that it
is also possible to extend this model
to a non-uniform setting by means of
the cλ (see e.g. [1]). Furthermore, we
have only used our general approach
to derive exact representations of
the expectations in question. How-
ever, based on the implicit function
theorem and standard techniques for
the computation of asymptotic rep-
resentations for coefficients of mul-
tivariate generating functions, it is
possible to extend well-known results
for the original setting by Meier and
Moon and thus to derive an asymp-
totic representation for t(α, β) only
depending on Θ(y, v) and its deriva-
tives.
We have shown connections of this
work to ranking and unranking pro-
cedures used e.g. for the generation
of random objects and sketched a
way to use our results for an analysis
of a general ranking strategy pro-
posed by Liebehenschel.
Finally we want so stress that our
results may additionally be inter-
preted as an analysis of the expected
savings (assuming a combinatorial
model) for the path length of search
tree structures constructed based on
the digital representation of keys im-
plied by the compression as used for
tries and PATRICIA.

8

Acknowledgements

I wish to thank the anonymous ref-
eree for comments and suggestions
which helped to improve the quality
of the presentation.

References

[1] D. J. Aldous, The Continuum
Random Tree II: An Overview,
Stochastic Analysis (Durham,
1990), London Math. Soc. Lecture
Note Ser., 167, Cambridge Univ.
Press, 1991, 23-70.

[2] L. Alonso and R. Schott,
Random Generation of Trees,
Kluwer, 1995.

[3] L. Comtet Advances
Combinatorics, Reidel Publishing
Company, 1974.

[4] A. Denise and P. Zimmermann,
Uniform random generation of
decomposable structures
using floating-point arithmetic,
Theoretical Computer Science
218 (1999), 233-248.

[5] L. Devroye, Non-Uniform
Random Variate Generation,
Springer Verlag, 1986.

[6] P. Flajolet, É. Fusy and C.
Pivoteau,
Boltzmann Sampling of Unlabelled
Structures, submitted.

[7] R. Kemp, The Expected Additive
Weight of Trees, Acta Informatica
26 (1989), 711-740.

[8] R. Kemp, Generating words
lexicographically: An average-case
analysis, Acta Informatica 35
(1998), 17-89.

[9] D. E. Knuth The
Art of Computer Programming,
Volume 3: Sorting and Searching,
Second Edition, Addison Wesley
Longman, 1998.

[10] D. E. Knuth The
Art of Computer Programming,
Volume 4: Combinatorial
Algorithms, Addison Wesley
Longman, 2005-6, Fascicles 2-4.

[11] J. Liebehenschel, Ranking and
Unranking of Lexicographically
Ordered Words: An Average-Case
Analysis, Journal of Automata,
Languages and Combinatorics 2
(1997), 227-268.

[12] C. Maŕınez and X. Molinero,
Generic Algorithms for
the Generation of Combinatorial
Objects, MFCS 2003, 572-581.

[13] A. Meier und J. W. Moon, On
the Altitude of Nodes in Random
Trees, Can. J. Math 30 (1978),
997-1015.

[14] M. E. Nebel, The Stack-Size
of Combinatorial Tries Revisited,
Discrete Mathematics and
Theoretical Computer Science 5
(2002), 1-16.

[15] A. Nijenhuis and H. Wilf,
Combinatorial Algorithms,
Academic Press, seconad edition,
1978.

[16] F. Ruskey, Generating t-Ary
Trees Lexicographically, SIAM
J. Comput. 9 (1977), 137-164.

[17] S. Zaks, Lexicographic
Generation of Ordered
Trees, Theoret. Comp. Science 10
(1980), 63-82.

9

