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Abstract

The most probable secondary structure of an RNA molecule, given the nucleotide se-
guence, can be computed efficiently if a stochastic context-free grammar (SCFG) is used
as the prior distribution of the secondary structure. The structures of some RNA molecules
contain so-called pseudoknots. Allowing all possible configurations of pseudoknots is not
compatible with context-free grammar models and makes the search for an optimal sec-
ondary structure NP-complete.

We suggest a probabilistic model for RNA secondary structures with pseudoknots and
present a Markov-chain Monte-Carlo Method for sampling RNA structures according to
their posterior distribution for a given sequence. We demonstrate the benefit of our method
in examples with tmRNA and simulated data.

1 Introduction

For many RNA molecules it is not the sequence of nucleotides (primary structure) that is of
paramount importance but the molecule’s conformation in space (tertiary structure). Since lab
techniques for determining the tertiary structure are both expensive and error-prone it is a long-
time goal of research to find reliable algorithms that derive a molecule’s conformation from its
primary structure. Because of the computational complexity of this task and the limited perfor-
mance of older computers first of all attention has been paid to the prediction of a molecule’s
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secondary structure. There the conformation is restricted to stay planar, additionally, so-called
pseudoknots are prohibited. So, from a mathematical point of view the secondary structure
becomes a special kind of planar graph as introduced by Waterman in 1978 [29]. The first algo-
rithm for predicting the RNA secondary structure was proposed by Nussinov et al. [24]. Using
a dynamic programming approach, Nussinov’s algorithm finds one secondary structure with a
maximal number of paired bases (assuming this to approximate a conformation of minimal free
energy). Of course, this does not lead to reliable predictions. However, Nussinov’s approach
is still the core of some algorithms like e.g. the Zuker algorithm [33] that nowadays are used
successfully. Major progress has been achieved by Zuker using a more accurate model for the
free energy of a molecule. The model used can be traced back to Tinoco et al. [27] where one
assumes that the free energy of a structure behaves like the sum of the free energies of all its
loops. Using this energy model and searching for a secondary structure of minimal free energy
(still using Nussinov’s dynamic programming scheme) led to much better results, and in general
refinements of the model lead to more accurate predictions.

A second class of algorithms is based on stochastic models of the molecule’s structure.
Examining a set of known molecule foldings it becomes possible to derive the maximum like-
lihood estimators of the model’s parameters. Then, in order to predict a secondary structure,
one computes the most likely conformation for the given sequence of bases. The algorithm
of Knudsen and Hein [14] is one prominent member of this class using stochastic context-free
languages (SCFGs).

When n is the size of the input measured by the number of nucleotides all the algorithms
discussed so far have a worst-case running time in O(n?) and need space in O(n?).

The classical algorithms of Nussinov and Zuker and the SCFG-based algorithms are founded
on similar dynamic programming ideas. For a reinterpretation of the algorithms of Nussinov
and Zuker in terms of SCFGs see [3].

Recently much attention has been paid to predicting the RNA secondary structure including
pseudoknots. Again, one approach is to minimize the free energy of all possible foldings. How-
ever, as proven by Lyngsg and Pedersen [16], predicting RNA secondary structure containing
pseudoknots of arbitrary types is NP-complete for a large class of reasonable free-energy func-
tions. Thus one has to consider subclasses as done by Rivas and Eddy in [26]. In this paper the
authors generalize the dynamic programming paradigm of Zuker to a class of pseudoknots that
are restricted to a quite general recursion scheme. The resulting algorithm needs time in O(n°)
and space in O(n*). Reeder and Giegerich [25] turn to a more restricted model for pseudoknots,
the so-called canonical simple recursive pseudoknots, which allow for an algorithm with worst
case running time in O(n*) and space consumption in O(n?). Again, the structure is predicted
by computing the energetically optimal conformation. However there is no obvious way to
restrict the set of pseudo-knot configurations, such that it still covers all biologically relevant
structures and is still compatible to efficiently computable context-free grammars.

There are also stochastic models which extend the class of stochastic grammars in use to
take care of pseudoknots. One step towards this direction has been taken by Cai et al. [2] who
use parallel communicating grammar systems to process pseudoknots leading to an algorithm
with running time in O(n°) and space in O(n*); Uemura et al. [28] changed to tree adjoining
grammars yielding also a restricted class of pseudoknots.
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The known RNA structures include at most a few pseudo-knots. These can be seen as
exceptions, which are added to structures, which follow context-free grammars not allowing
pseudo-knots. This point of view is the basis of the approach presented here; a context-free
grammar is used to generate the pseudoknot-free core of a structure. Additionally, a special
symbol is generated in order to represent regions of the primary structure that will become parts
of a pseudoknot.

2 TheMode€

Like several other groups (as e.g. Knudsen and Hein [14]; Rivas and Eddy [26]; Cai et al. [2])
we use a stochastic grammar to define a prior probability distribution on the set of possible
secondary structures. Our grammar (together with a non-standard notion of derivations) allows
the generation of pseudoknots in a non-context-free way. Generating an RNA sequence by
applying grammar rules obviously does not correspond to a biological mechanism. However, in
our Bayesian framework we rather consider it as a way to define a prior distribution on the set
of possible RNA structures. We do not intend to put too much information into this prior and
therefore use a very simple grammar.

We combine a stochastic context-free grammar (used to generate a pseudoknot-free core
structure) with the possibility to add arbitrary stems (in order to insert pseudoknots) in a similar
way as described by Cai et al. [2]. The context-free part of our grammar is similar to the
grammar of Knudsen and Hein [14]; the non-terminal F' generates stems, the non-terminal L
generates loops, and the non-terminal S is the starting-symbol of the grammar. In detail, the
grammar rules are of the following types,

LS xLSy z
/ / /
S — L F — xFy L — uxFyv
N\
q

whereas the terminals u, v, x,y, and z represent nucleotides, i.e. are taken from the set A =
{a, ¢, g, u}, and the probabilities of the grammar rules favor pairs (u, v) and (x, y) which match
in RNA stems. The terminal symbol ¢ is a surrogate for some subsequence (of the primary
structure) which will be part of a non-context-free stem.

The pairs (u,v) and (z,y) in the rule L — uxFyv are chosen independently of each other
according to some distribution (7, ).,. As usual for SCFGs all rules to be applied to nonter-
minals are chosen independently of each other. When L. — =z is applied, z is taken from a
probability distribution (7, 7., 74, m,). When one of the rules emits a pair of nucleotides, then
it is taken from a binucleotide distribution (7,,) (z.4)c{a.c.g,u)2-

The probabilistic generation of a sequence s of terminals (including ¢) can be represented
by a parse tree, which is an ordered tree whose leaves, read from left to right, are labeled by
the terminals in sequence s and internal nodes are labeled by nonterminals. The parse tree is
generated in the following way: Start with a single node labeled by S. Then repeat the following
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three steps until all leaves are labeled by terminals: For each leaf £ labeled by some nonterminal
X, select some rule X — «a, where « is a series of terminals and non-terminals «; . . . o, , add
ni new nodes labeled by a4, . . ., a,,, and define the node labeled by «; to be the i-th son of £,

From the perspective of the context-free grammar, the symbol ¢ is a terminal. However, after
all nonterminals have been transformed into terminals, the g-symbols are used to generate stems
that may belong to pseudoknots. Therefore we need to modify the usual notion of derivation of a
context-free grammar: Given a terminal string s, the set of ¢ symbols appearing in s is randomly
subdivided into pairs. If the number of ¢ symbols is odd, then one of them is randomly picked
and replaced by a nucleotide (single terminal symbol). Each pair of ¢ symbols produces a
random number of base pairs. This is done in the following way: Start with ¢ — wxRyv and
iteratetively apply one of the rules R — xRy or R — xy, where the probability of the rule
R — xRy is the same as the probability of I — xF'y and the emission probabilities for the
nucleotide pairs (u,v) and (z,y) are the same as above. Then the two g-symbols within s are
replaced by the two complementary halves of the resulting nucleotide sequence. When all ¢’s
are replaced, the resulting terminal string s’ is considered as the result of the modified derivation
process. Note that pseudoknots can be nested in arbitrary ways in this model and that a primary
structure in general can be generated in many ways since both, our context-free grammar and
the way the symbols ¢ are processed, are ambiguous.

A restriction in our model is that stems cannot be shorter than three base pairs. Since we do
not distinguish between bulges and loops, this implies that bulges can only occur in a stem with
a distance of at least 3 base pairs. However, the way we combine the SCFG with pseudoknots
and the methods described in the following can also be adapted to any other SCFG model of
RNA folding without such restrictions.

3 Algorithmsand | mplementation

McQFold, a C++ implementation of our method is freely available from the web sites of the
authors under the terms of the GPL, cf. [8].

3.1 Notations

When a sequence is generated according to our model, we define the complete history H to
consist of the parse tree T'(H) and the g-stem configuration Q (), which contains the infor-
mation which ¢-symbols are paired and which subsequences were emitted from them. If 7 is
a candidate for the parse tree and p a possible g-stem configuration, then the probability of the
complete history (7, p) is Pr(H = (7,p)) = Pr(T(H) = 7) - Pry,,(Q(H) = p), where gy is
the number of leaves in 7 labeled by ¢ and Pr,,, (Q(H) = p) is conditioned on this number.
Pr(T(H) = ) is the product of the probabilities of all rules used to generate  yielding one
factor for each internal node of 7. Pr,(Q(H) = p) is 0 if n is not the number of ¢g-symbols
occurring in p. Otherwise it is the quotient of the probability of the derivation used in order to
generate stems from the ¢-symbols (which again is given by the product of the probabilities of



the rules applied) and the number of possibilities for building pairs of g-regions within 7. This
numberis (n —1)(n —3)---5-3ifnisevenandn- (n —2) - (n —4)---5- 3 if nis odd. Let
S(h) denote the sequence generated by some complete history /. The probability of a sequence
s of nucleotides to be equal to S(H) is the sum of the probabilities of all possible histories:

Pr(S(H)=s)= Y  Pr(H=h).

{h: S(h)=s}

Let J(H) be the sequence of intervals [i, j1], ..., [ip, jp], Which indicate the subsequences
(given by the i,-th up to the j,-th symbol, 1 < k£ < p) of S(H) generated by g-symbols.
Let C'(H) be the set of unordered pairs {a,b} C {1,...,p} indicating that the subsequences
of S(H) given by J,(H) = [ia, ja) @and Jo(H) = [is, j5] Were jointly generated from a pair of
g-symbols.

By M(H) we denote the set of all unordered pairs {, 7} such that positions < and j in
S(H) are paired in a stem (generated by the context-free part or by g-symbol rules). We call
M (H) the structure generated by . Given M (H), the conditional distribution of S(H) is very
simple. Each pair (S;(H), S;(H)) with {7, 7} € M(H) is distributed according to (7)., and
each S;(H) with i & Uyenm)U is independently distributed according to (7). There are no
further dependencies.

In the sequel, the sequence over {q, ¢, g, u, ¢} generated by the context-free grammar will
only be denoted by S?(H). Furthermore, S(H), M (H), J(H), ... will be denoted by S, M, J, . . ..

3.2 Computing the Likelihood

Given some data (which in our case will be a terminal string s) that are assumed to be randomly
generated according to some probability model, the Likelihood of some fixed values of the
model’s parameters is given by the probability of the data in the model using these parameter
settings. In principle, the likelihood for our model can be computed by summing over all
possible g-stem-configurations (v, ¢):

Pr(S=s) = ZPr(S:s,C’:%J:L)
Yot

= ZPr(S:s|C':7,J:L)-Pr(C’:7,J:L).

’Y,L

For given (v, ¢), the probability Pr(S = s | C = v, J =) -Pr(C = v, J = ¢) of the sequence s
can be computed by dynamic programming strategies known for SCFGs. Instead of computing
the sum directly, which is not feasible because of the huge number of possible (v, ¢), one can
apply well-known sampling strategies.

3.3 Dynamic Programming Algorithmsfor SCFGs

For a given sequence s € {a,c,g,u}"™ and a set . of intervals [¢, j] C {1,...,n} let s be the
sequence over {a,c, g, u,q} that we obtain from s by replacing each subsequence s, ..., s,
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with [a,b] € ¢ by the symbol ¢. For1 < ¢ < j < |s‘|and A € {S, F, L} let ®;;(A) be the
probability that the context-free part of our grammar transfers the symbol A into the sequence of
terminals s, . .., s5. These values can be computed in time O(|s*|*) by the forward algorithm,
which is based on dynamic programming. In detail, the values ®,;(.) are computed iteratively
with increasing distance j — ¢ and the values ;. (.) with j' — ' < j — ¢, which were computed
previously, are used for the computation of ®,;(.). For example, for the computation of ®,;(F")
we translate the rules F* — xF'y and F' — 2 LSy into the following equation:

(I)z](F) = ®i+17j71(F> . PI"(F — xFy) T,
+ Z 7Tsi5j : PI'(F — xLSy) . cI)i—l—l,k:(L) . <I>k+17j(S),
k

For computing all these values we need to compute a summand for each of the O(n?) triples
i,k,jwith1l < i < k < j < |s*. This complexity is caused by the rules S — LS and
F — xLSy. In our implementation we save a significant amount of runtime by keeping track
of Nij = {k <j : ®;(L) > 0} and computing only summands with £ € N;;. At this point
we take advantage of the restriction that stems must contain at least three position pairs and that
only mismatches of the type ¢ : u are allowed.

Let U,;(A) be the probability that the parse tree 7'(‘H) generates a sequence .S¢ which begins
with the prefix s§, s, ..., st_1, is continued by a subsequence generated by a nonterminal A and
ends with the suffix s;_,, ..., sj,.|. We compute the values W,;(.) with the outside algorithm (see
e.g. [3]), which is also based on dynamic programming. The values @, ;(.) and ¥;;(.) can be
used to compute the posterior probability of i and j to be paired, conditioned on (C, J). For
1,j ¢ Ure, 1 we obtain

Pr({i,j} e M |C=7,J =15 =5)
= Uy(F) - Pr(F — aFy) - @iy (F) - o

1777

+ D y(F) Pr(F — aLSy) - Bipr (L) - Ppyrjo1(S) - Tt

J

+W;; (L) - Pr(L — uxFyv) - ®iy0 o F) - Tst,st * st

L
i+1:55-1

+\I/Z‘_17j+1(L) : PI'(L — UZEFyU) . q)i—f—l,j—l(F) : 7T51L'—1755'+1 . ng,s;‘

3.4 Bayesian Sampling

Given an RNA sequence s we want to sample sets of position pairs 1 according to their posterior
probability of x, which is given by

Pr(M=pul|S=s) = ZPr(Z\/[:u,C:’y,J:L\S:s)
022
= ZPr(M:,u|C’:%J:L,S:s)-Pr(C’:%J:L|S:s).

’y?b



We sample values (v, ¢) for (C, I') according to the posterior probability Pr(C' =~,J = | S =
s). For given (v, ¢, s) we compute for all position pairs {7, j} the probability to be in A/. This
is done with a variant of the inside-outside algorithm in time O(n?) and space O(n?). We
approximate Pr({i,j} € M | S = s) by averaging Pr({i,j} € M |C =~,J = 1,5 = s) over
all sampled pairs (v, ¢).

In a similar fashion we sample possible RNA structures p (approximately) from their pos-
terior probability Pr(M = u | S = s). For each sampled pair (v,:) we apply the inside
algorithm with randomized backtracking for sampling possible RNA structures p according to
Pr(M=u|C=~,J=15=s).

34.1 Metropolis-Hastings-Strategy for Sampling ¢-Stem Configur ations

We apply a Markov-chain Monte-Carlo method (cf.[15]) for sampling candidates (-, ) for
(C, I) according to the posterior probability Pr(C' = v, J = ¢ | S = s). We construct a random
sequence (Cy, Jo), (C4, J1), ... such that Pr((C,, J,) = (v,¢)) converges to Pr(C = ~,J =
L] S = s)forn — oo. This is done with a Metropolis-Hastings strategy (cf. [17][9][15]).
Given (Cx_1, Jx—1) = (7,¢) we let a random generator propose (C, Ji) = (7/,¢") with some
probability @ (,,.— .~y and accept this proposal with probability

_ / ! —
mm{L Qu—(e) Pr(C=+,J=1 \5—8)}
Quy—(vwy Pr(C=7vJ=1|8=5s)

It is well-known and easy to check that this results in a Markov chain which converges to the
desired probability distribution if the “proposal chain” ) _. is irreducible.

In the examples described in section 4 we start with J = () and perform a “burn-in” of 100
steps before we start sampling. Then we sample 20 ¢-stem configurations, always performing
50 Metropolis-Hastings steps between two subsequent samplings.

3.4.2 Proposal Distribution

In order to obtain a proposal (7', ") for (Cy, Ji) from the value (v, ¢) of (Cy_1, Jx—1) , We toss
a fair coin to decide if we erase (if possible) or add a pair of intervals, which form a g-stem. If
|t] = 0, we will always propose to add one stem.

If we decide to erase a pair of g-regions, then we pick {[i4, jal, [is, jo) } uniformly from . and
set ¢/ := ¢\ {[ia. jal, [ibs 5]} and v = 4\ {{[ia Jal. [iv. o] } .

If we decide to add one ¢-stem, then we draw a pair of intervals & = {[i,, j.], [¢y, j,]} from
a certain probability distribution (p¢)e. The probability p, reflects how suspicious & is to be
part of a pseudoknot. This distribution is computed in advance. p. is supposed to be high if
s’s subsequences corresponding to [i,, j,] and [i,, j,] fit together well, i.e. represent reverse-
complementary subsequences at best, and whether it is unlikely that ¢ is part of a regular stem
which can be produced by the context-free part of the grammar.

In order to quantify the first criterion we reverse the sequence s, replace all nucleotides by
their complements, and align the resulting sequence locally against the original sequence. An
ungapped local alignment is called HSP (high-scoring segment-pair, cf. [1][22][19]) if its score
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is higher than some threshold and if the alignment is not part of an ungapped alignment of even
higher score. We use log -~ as alignment score for a pair of nucleotides « and v. We select
our g-stem proposals among aII pairs of intervals which correspond to HSPs. Let o, be the score
of the HSP corresponding to &.

For each HSP we test the second criterion by SCFG methods. Using the inside-outside
algorithm we compute for each pair of positions ¢ and j the probability Pr({i,j} € M | S =
s,C' = J = () thati and j are paired in a structure without pseudoknots. Let g, be the maximum
of these values over all pairs {7, j} implied by . We use

1— e o

Pe X —F———~
¢ max{qe , co}

with ¢; = 107%and ¢, = 107°. This function is the result of manual trial-and-error optimization
with simulated sequences of length ~ 300. We expect potential for improvements of our method
at this point, especially for longer sequences.

3.5 Searchingthe Most Probable Folding

For estimating the structure of an RNA molecule from its sequence we strongly recommend
using Bayesian sampling instead of searching a single structure with maximal probability or
energy. However, for being able to compare our model to other models of RNA folding we
have also implemented a heuristic optimization method, which is based on simulated annealing
(cf. [13][15]). In the first stage it searches for the g-stem configuration (-, ¢) with the highest
posterior probability Pr((C,J) = (v,¢) | S = s). For this end, we start with the best (o, ¢o)
found during the MCMC part. In the following 1000 steps we take proposals (', :’) to change
(7i1,ti—1) Into (4, ¢;) from the same proposal chain as in the MCMC procedure (see section
3.4.2), but the acceptance probability is now given by

VA o 1/t
Pr((C,J) = (Yic1,ti-1) | S = 5)
setting the so-called temperature ¢; in the i-th step to i/300.
In the second stage we start with the optimum found so far and perform additional 1000

steps of the same proposal chain using the same temperatures t; = 300,t; = 150,t3 =
100, . .., t1000 = 3/10. But now the acceptance probability in step i is taken to be

. max, Pr( 7 (C,.))=(¥,/)| S =s) 1/t;
— {1’ (maXT Pr(T (C J) = (Vic1,tie1) | S = s)) } '

There, for given v, ¢, s, the value max, Pr(7" = 7, (C,J) = (y,¢) | S = s) can efficiently
be computed with the SCFG variant of the CYK algorithm, which is similar to the forward
algorithm with sums replaced by maximizations (cf. [3]).

The idea behind this two-stage approach is as follows. In the first stage we look for values
for (C, .J), which contribute much probability in combination with several different choices for
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T'. In the second stage, when we are closer to the optimum, we look for the most probable triple

of values (m) for (C, J,T). The most probable triple found during the second stage is an
estimate h for the complete history H of the sequence s. The corresponding RNA structure
M (h) is the output of our program McQFold.

Of course, it is not guaranteed that our simulated-annealing heuristic finds the most probable
history. Moreover, since the map h — M (h) from the possible histories to the possible struc-
tures of a sequence is not injective, the most probable history does not necessarily correspond
to the most probable structure. Note that there is no such problem when Bayesian sampling
is applied. If a random history H is sampled from the posterior distribution, then M (H) is
distributed according to the posterior distribution on RNA structures.

3.6 What isPossiblein Our Model but Ignored by Our Method

According to our model, an odd number of g-symbols can be generated. In this case, one of
them will be replaced by a nucleotide. The contribution of this possibility to posterior proba-
bilities of structures is rather small and we neglect it in our algorithms. Because we change the
configuration of ¢-stems only during the proposal procedures by adding or removing pairs of
g-symbols which jointly generate a ¢g-stem, no odd number of ¢g-symbols may occur. Note that,
assuming reasonable values of the model parameters, a history containing the rule ¢ — « (for
x € {a, c, g,u}) can never be the most probable history of a given sequence, because we obtain
a more probable history by replacing the sequence of rules L — ¢ — =z by the single, more
probable rule L — z.

When looking for ¢-stem candidates we always extend the high-scoring segment pairs as far
as possible. As a consequence, we cannot exactly detect a ¢-stem if its neighboring positions
match by chance such that the stem can be elongated to a stem of higher score.

4 Results

In the examples below our program McQFold is used with the following probabilities for the
grammar rules: S — LS :0.85, S — L :0.15, F — LSy : 0.25, F — xFy : 0.75, L —
x:09 L — uxFyv : 0.06, L — ¢ : 0.04. These values were not specifically fitted to
sequence data. We simulated data according to our model and changed the parameters until
the numbers and lengths of loops, stems and pseudoknots seemed reasonable to us. Again, we
expect potential for improvements.

For the nucleotide distribution in loops and the base pair probabilities we used the follow-
ing rough estimates from the available sequence data: m,, = m,, = 0.175, 7y = Ty =
0.275, Ty = Ty = 0.05, m, = 0.35, 7. = 0.2, 7, = 0.2, 7, = 0.25.

We do not allow for other mismatches than ¢ : « in stems, or the other way round, other
mismatches are interpreted as bulges.

Results of McQFold are compared to those of RNAfold from the Vienna package (cf. [11][10]),
and of pknotsRG, an implementation of Reeder and Giegerich’s method, cf. [25]. All programs



correct pairs | false pairs | missing pairs | specificity | sensitivity
McQFold 86 21 21 80.4 % 80.4 %
RNAfold 58 61 49 48.7 % 54.2 %
pknotsRG 55 65 52 45.8 % 51.4 %

Table 1: Ability of McQFold, RNAfold, and pknotsRG to correctly predict the base pairs in
the tmRNA of Treponema Pallidum. As reference we take the structure given on the tmRNA
website [30].

were used with default parameter settings. We judge the results of the three methods by the
following two criteria:

Specificity: The relative frequency of correctly predicted pairs among all position pairs that
were predicted to be paired with each other.

Sensitivity: The relative frequency of correctly predicted pairs among all position pairs that
are actually paired in a stem.

4.1 Illustrative Example: Folding pre-tmRNA of Treponema Pallidum

As an illustrative example we consider a pre-tmRNA sequence found in the syphilis bacterium
treponema pallidum (tmRNA Website 1D: Trepo_palli_0191, cf. [6][31][30]).

The posterior probabilities for base pairings estimated by McQFold are shown in the upper
half of Figure 1(a). The lower half displays the structure given on the tmRNA website [30],
which we assume to be true. Most of the actual stems were predicted as highly probable and vice
versa. In Figures 1(b),(c),(d) we compare the estimated posterior probabilities to the structure
given on the tmRNA website. In this example the structure obtained by the simulated annealing
procedure of McQFold was slightly more accurate than the very similar structures given by
RNAfold and pknotsRG.

Detecting pseudoknots in this sequence was obviously a difficult task. Only McQFold was
able to correctly predict one of the pseudoknots.

4.2 Performance on tmRNA

Additionally, we applied McQFold, RNAfold, and pknotsRG to all 351 tmRNA molecules of
length > 200 found on the tmRNA website (http://www.indiana.edu/~tmrna/, cf. [31][30]) in
autumn 2005. In Figure 2 we compare the distributions of the specificity and the sensitivity
reached by our method and by the programs RNAfold and pknotsRG over these 351 sequences.
Our method is slightly, but significantly better in specificity than the other methods. The median
sensitivity is similar for the three methods. Our method has the least variability in this value.
The performance of our method on tmRNA sequences is very encouraging. However, it is
not yet clear if this indicates a great potential of our model or if the parameters we used with our
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(a) McQFold: posterior pairing probabilities (b) McQFold: simulated annealing

0.05- 0.2

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
position position
(c) RNAFold (d) pknotsRG

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
position position

Figure 1: Results of McQFold for the pre-tmRNA of Treponema Pallidum. Paired nucleotides
are represented by arcs connecting the positions. The Lower half of each sub-figure displays
the structure given on the tmRNA website Upper halves: (a) grey tones code for the posterior
pairing probabilities estimated by the McQFold’s MCMC procedure, (b) structure estimated by
the McQFold’s simulated annealing procedure, (c) structure estimated by RNAfold, cf. [10], (d)
structure estimated by pknotsRG, cf. [25].
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tmRNA
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McQFold RNAfold pknotsRG McQFold RNAfold pknotsRG

Figure 2: Comparison of sensitivity and specificity distributions of McQFold, RNAfold, and
pknotsRG on tmRNA sequences. All programs were used with default parameter settings.

method were just by chance more suitable specifically for tmRNA than the default parameters
we used with RNAfold and pknotsRG.

Figure 2 also makes clear that we cannot expect to find the true secondary structure of
a tmRNA molecule by applying any of the three programs to its sequence. This uncertainty
should be made explicit and it is one of our reasons to favor Bayesian sampling over point
estimation for RNA folding. In Figure 3 we explore the reliability of our Bayesian sampling
method (cf. section 3.4.1). For 0 < = < 1 we consider all pairs of positions to which a pairing
probability of ~ = was assigned. If our method works well, then among all these pairs the ratio
of position pairs that are actually paired in the true RNA structure should be close to x. Indeed,
Figure 3 shows that this is the case.

4.3 Performanceon Simulated Data

Could we improve the method by using a more realistic model or better model parameters? In
order to get an impression of the possible performance of our method under ideal conditions,
we simulate data according to the model our algorithms are based on, using the same model
parameter values for data simulation as for data analysis in McQFold (at least up to the neglects
discussed in section 3.6). Sequences of length < 300 were rejected. Thus, we generated 200
folded sequences of length between 300 and 460 and applied McQFold, RNAfold and pknotsRG
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Figure 3: Each dot (z, y) displays the ratio y of actually paired position pairs among all position
pairs in any of the tmRNA sequences to which McQFold assigned a folding probability of ~ x.
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Figure 4: Comparison of McQFold, RNAfold, and pknotsRG when applied to random data
generated according to our probability model.

to these sequences and compared the predicted to the actual structures. It is not astonishing that
McQFold performed better than the other programs for these sequences, cf. Figure 4. However,
for most sequences only between 50% and 85% of the position pairs were correctly predicted,
and the variance of this value differs very much between the sequences.

Figure 5 shows that this variance can be assessed quite well by our MCMC sampling
method. For all values of x between 0 and 1 we see that among all position pairs with esti-
mated posterior pairing probability around x, the relative frequency of correct position pairs
was indeed close to .

5 Discussion

We have presented a model for RNA structures with pseudoknots and Bayesian sampling meth-
ods for estimating the structure of RNA molecules including pseudoknots. We do not restrict
the entanglement of pseudoknots a priori but our randomized procedures may take advantage
from the observation that structures containing a very high number of pseudoknots are unlikely
for realistic RNA sequences.

The examples in section 4 illustrate that estimating the secondary structure of an RNA
molecule just from its nucleotide sequence is a difficult task. The reliability of our method
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Figure 5: Each dot (z, y) displays the ratio y of actually paired position pairs among all position
pairs in any of the simulated sequences to which McQFold assigned a folding probability of

~ I.
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(even without careful parameter-adjustments) for this problem is similar to that of RNAFold and
pknotsRG. None of the methods/programs came close to the presumably real structures which
are given on the tmRNA website. If additional information (as for example known structures of
similar sequences) is not available, it is important to assess the reliability of the structure esti-
mates. For our model this can be done with the MCMC-sampling strategy described in section
3.4.1. In fact, we obtained very encouraging results in section 4 when we applied this Bayesian
method to sets of test data. For the tmRNA sequences and the simulated data the estimates of
the reliability of position pairings turned out to be very accurate.

If more information than just one sequence is available, it should obviously be used. In many
cases homologous RNA sequences with known structure can be found in a data base. Homology
between sequences can help even if there is no prior knowledge about the structure of any of
the sequences. Compensatory mutations, which conserve complementarity between segments
of an RNA sequence through an alignment give strong evidence that the segments form a stem
which is relevant for the function of the molecule, cf. [12]. Extracting structural information
like this from an alignment of RNA sequences should also be based on a probabilistic model
for RNA structure. In this article we have shown how pseudoknots can be incorporated in such
a model. If it seems necessary, it is straight-forward to combine the pseudoknot generating part
of the grammar with a more elaborate SCFG, as for example the SCFG proposed by Nebel in
[23].

Finally, information on the structure of related RNA molecules might be useful for refining
the alignment of their sequences. This combined with the desire to assess the reliability of the
estimates for alignments and structures leads to the idea of applying a Gibbs-sampling strategy
(cf. [7][15]) to combine our RNA structure estimation method with sampling algorithms for
sequence alignments (cf. [20][18][5][21]).
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