Definition

Let T € X" a text. A directed tree By = (V, E) with root r is
called compact suffix tree for T, if it satisfies the following
conditions:

1. Bt has exactly n leaves, labeled with numbers 1 to n.
2. Each internal node of Bt has at least two successors.
3. The edges of Bt are labeled with substrings of T .
4

. Labels of edges leaving the same node start with pairwise
different symbols.

5. The path from the root to leaf i is labeled with T; ,,
1 <i<n.

Lemma
Let T € X" a text. A compact suffix tree Bt for T has O(n)
nodes. Labeling all edges takes O(nlog(n)) bits.

Rewars: v PBlater

St inaoe Waofy
=2 2 -1 Lé—uo‘l(\

Z——v;"\c“-v Vie ’.C’ !/éu-\;cv\ — N- # B’.*Y Tro Mw I/Cnvb‘\)

>
/’\ulxmw) ist anv (0,3>¢ [’l:v\l i€ w~t
Loy (0) PiAs dhessiellbay,

Construction: (Ukkonen's algorithm)
Definition

An implicit suffix tree is the tree resulting from the compact suffix (Q
tree for T - $ by /

1. removing all occurrences $ from the labels. j

2. removing unlabeled edges (and nodes which are afterwards
no longer reachable from the root) and

3. removing nodes with only one child (merging the incoming
and the outgoing edge to one edge labeled with the
concatenation of the previous labels).

http://www.echalk.de
http://www.inf.fu-berlin.de/~fland
http://www.inf.fu-berlin.de/~knipping
http://www.inf.fu-berlin.de/~rojas
http://www.inf.fu-berlin.de/~tapia

Approach: Process T symbol by symbol from left to right (online
algorithm) constructing implicit suffix trees /By, corresponding to
the prefix Tq . IBy consists only of the root. /B; has two nodes
(root and a leaf labeled with 1), connected by an edge labeled
with Tl.l-

Now we construct /B;, 1 from IB;, 1 < i < n—1 as follows:

for /1:=1 to n—1 do begin
// Phase i+1
for ;= 1 to /+1 do begin
Traverse IB; along the path TJ[j..i];
If necessary extend the tree at the
position reached this way by T[i+1];
// Details follow
end ;
end ;

Rule 1: If the path labeled T;; ends in a leaf, 7;.; Is appended to
the label of the edge leading to the leaf.

Rule 2: If the path does not end in a leaf and there is no
possibility to continue it with 7;,1, a new edge to a new leaf is
created and labeled with T;.;. The leaf is labeled ;. If T;; ends
amidst an edge, additionally a new internal node has to be created
at the respective position.

Rule 3: If the path can be continued with T;,; nothing is done.

Example: T = chachp

Caution: Nested loops +- traversal along T;; = running time
cubic in length of text.

Tricks:

1.) If for given j Rule 3 is applied for the first time:

— The path labeled T;; can be continued with T;.;, created
when inserting word w.

= Suffixes of w inserted in an earlier phase guarantee existence of
a continuation of T ;, j/ > j with T;;;.

= Rule 3 implies termination of the current phase.

2.) A leaf always remains a leaf. If labeled j it represents all
suffixes of T starting at position j. Whenever we insert 7;;,; in a
later phase, we reach leaf j and apply rule 1. With 1.) it follows
that:

» Each phase / + 1 starts with a sequence of extensions
(beginning with j = 1), in which only rules 1 and 2 are
applied.

» Let j; denote the last extension in phase / in which rule 1 or
rule 2 is applied. As each application of rule 2 generates a
new leaf j; < j;.1 holds. Thus the initial sequence of
applications of rules 1 and 2 can't become shorter in later
phases.

= All extensions for j € [1: j;] in phase / + 1 will be by rule 1
because either there was already a leaf labeled j in phase / (in this
case only its edge label is extended with T;,1) or in phase / the
second rule has been applied for T;; (we consider j € [1: j;], so
rule 3 is ruled out for extension j) so now there exists a leaf
labeled ; for which the edge label is extended.

= We don't have to do extensions 1..j; explicitly if we mark the
leaves’ edges with (p, e), e a global symbol meaning current end
of text. (e is set to / + 1 in phase / + 1.)

3.) Forj € [j; +1,i+ 1] use rule 2 or 3. Y
—t
» rule 3 = ji,y =/ —1(i.e. j = ji; 1 + 1); terminate. 'l) —
» phase terminated by different rule = ;1 ;=7 + 1. , ,

Observation: Two consecutive phases have at most (WC is that ¥

rule 3 ends phase)_one j in common, for which both do explicit
extensions:

Phase 2: compute explicit extensions for j = j; +1... o + 1,
Phase 3: compute explicit extensions for j = o +1.../3+ 1,

Phase i-1: compute explicit extensions for j = ji o+ 1...ji-1 + 1,
Phase i: compute explicit extensions for j = ji_1 +1...j; + 1.

= | T| many phases and j; < n imply at most 2n explicit
extensions.

Create tree IB;;
J[11:=1; // leaf 1 already exists
for i:= 1 to n—1 do begin
// Phase i+1
e:=i+1; // all implicit extensions
Jjli+1:=i+1; // no application of rule 3
for j:= j[i/]+1 to i+ 1 do begin
Traverse IB; along path T[j..i];
If necessary, extend IB; by T[i+1];
if (rule 3 was used) then begin
Jli+1]=,-1;
End phase /+1;
end ;
end :
end ;

Example: T = acacag.

4.) Speed up traversal of edges labeled with more than one
character by only evaluating the first character. The position at
which to continue in the traversal word is determined from the
indices saved for the edge. (We already noticed that in phase / + 1
each word T;; is present in the tree.)

5.) Add utility links:

Definition

let w=u-v,u€X,ved” and IB an implicit suffix tree. If IB
contains an internal node x, reached from the root by w and a
node y with path-label v, the suffix link of x points to y.

V=uyv

Advantage: The places of explicit extensions can be found
without traversing the tree (starting at the root) each time.

If in phase / + 1 the extension for T;;,; has to be done, the tree
has to be traversed along T;; and the existence of 7;.; at the
position x reached this way has to be checked.

The next extension then considers T, ;1. The node reached by
T;11.; is found via the suffix link of x (if there is an internal node).
The same holds for the next extension (a suffix link leads possibly
directly to the node reached by T, ;) and so on.

x no internal node: Return to y, the last node on the way to x
(we can always save this node) and follow this node’s suffix link.
= The node reached thusly is reached by a prefix of 7, ;.From
there we have to continue using the symbols between y and x.

Consequence: Assuming each internal node has a suffix link, an
explicit extension has constant amortized running time.

Example: Extend tree by 7.1 = acag and its suffixes:

Lemma
If a new internal node x with path label ua, u € X, is created by

extension j of phase i + 1 then either o already ends at an
internal node of the current tree or this node is created at the
next extension (extension j + 1 of phase | +1).

Proof: New internal node < rule 2 < path T;; ends amidst an
edge label with next character ¢ not equal T;,;.

= Earlier phase inserted T;; - c.

= The same phase afterwards processed 7;,;; - c.

= d path P for T;11, in the tree.

a) P can only be continued with c:

= Extension by T;;1 ;.1 creates an internal node at the position
considered.

b) P can be continued with various symbols:

= At the position considered an internal node must be present. [

Corollary

For Ukkonen's algorithm we can assure that each internal node
created has a suffix link after the following extension. This
requires constant extra time.

Proof: Induction: /B; has no internal nodes relevant for suffix
links (at the root u = ¢).

Assumption: Assumption holds after phase /.

Lemma 2 = The target node of a node created in the j-th
extension of phase / + 1 will be present after the (j + 1)-th
extension of the same phase. (This gives a simple method to create
suffix links: We remember nodes created by rule 2 and add the suffix link
after reaching or creating the target node during the next extension.)
Since it is impossible that the last extension of a phase
(considering the single character T;,1) creates a new internal
node all new internal nodes will have a suffix link after the

(i + 1)-th phase. O

Running time: At most 2 - | T| explicit extensions with constant
amortized cost lead to running time linear in |T]|.

Compact suffix tree: Add a | T| + 1-th phase to the algorithm
with T/ = T - $. Afterward replace e with | 7’| by a tree traversal
(linear time)

— compact suffix tree for T’.

Applications
String-Matching:

Text T fixed, String P varies (suffix tree reasonable only in this
case!).

= Running time in O(|P| + k) for k the number of occurrences
of Pin T.

(By assumption the subtree reached via P has k leaves and thus
at most 2k — 1 nodes and can be traversed in time O(k).)

Set-Matching: Sequential Search of all P; in the suffix tree has
the same running time bound as the Aho-Corasick algorithm.

But: Aho-Corasick creates search term tree of size O(m),

m:=>_,_._n|Pil, in time O(m), and searches in time O(n),
n:=|T|.

Suffix tree has size O(n), construction time O(n) and search time
O(m).

= If all P; together are longer than the text, the suffix tree
solution needs less space but more time (preprocessing ignored). If
the set of the strings is shorter than the text, the Aho-Crasick
needs less space but more time.

= We observe a place/time-trade-off, as no solution is superior in
place and time consumption at the same time.

