String Algorithms
String-Matching:

Definition
Given a text T ¢ > " and a string P < >, the string matching
problem is to determine all s © N, satisfying:

(v e 2w e 2)NT = vPw).

The number s from this definition i1s named shift.
A shift is called feasible, if 7 is found at the respective place in 7,
otherwise s is called infeasible.

Naive algorithm: Try all shifts s ¢ [0, T P[] one by one.

Worst case running time: O(P - | T} BEg. if P =27 T — a7,
mnecN, m<n. ?

Reason of the slow running time: Knowledge about / gained in
previous steps is not used. If e.g. /7 — 2a2b and s — 0 is a feasible
shift, we already know that s — 1, s = 2 and s — 3 are infeasible.
Thus algorithm is implemented in Java runtime library!

Efficient String Matching Algorithms

Here we only give an overview:

1) Using finite automata

Example: 7 — ababaca and | — abababacaba.

Fundamental definition:

Definition
The suffix function op - 2% — {0, 1,....|P } of P is defined by

X J
—
op(X) = mw;{k | Poy O X}, — e

i.e. op(X} is the length of the longest prefix of P being a suffix

of X (where P 1 X denotes that P is a suffix of X and P, is the
length i prefix of).

Now with 6{q, 2} == op(Fo,, 2), Vg © @ and Va ¢ % a linear scan
of the text is sufficient to find all feasible shifts.
Preprocessing: (’(m” - | |}-algorithm to compute 4:

| Bl
m:=|P|; Y
for q:=0 to m do begin
for a in Sigma do begin
ki=min(m+1,9+2); // P[0..k] should be
// suffix of P[0..q]+a
repeat
k:=k —1;
until (P[0.. k] is suffix of (P[0..q]4+a));
delta[q,a]:=k;
end
end :

» P[i..j] denotes substring ~;; of ~,

» operator + on strings describes concatenation.

2) Knuth-Morris-Pratt Algorithm (KMP)

Definition
Let 7 < > a string. The prefix function
Op {12, ..mp —{0,1,....m— 1} of P is defined by

HP(Q) = max{k ‘ k < g A\ Pgﬁ _1 P[j‘q}.

Example: For 7 — ababaca, [15(4) = 2 holds, since k — 2 is the
maximum value for which 7, 1 754, k < 4, holds. This leads to
the following situation:

These two matches need not be verified,
they can be inferred from [1,(4) — 2.

ababaca

P=abab aca

>

Q-

h a b+ T

1

\

-?Q
17 o

9 &
1 m=[P|;
2 Pi[1]:=0;
3 k:=0;
4 for q:=2 to m do begin
5 while (k>0) and (P[k+1]<>P[q]) do
6 k:=Pi[k];
7 Op | if P[k+1]=P[q] then
8 k:=k+1;
9 Pilq]:=k;
10 end;

L It

v

LY

Running time: (amortized analysis using the potential method)

» Let the /-th operation Op; be the /-th iteration of the
for-loop. (Executing lines 7 through 9 yields constant cost c.).

» — Cost C; of Op, Is ¢ plus number of iterations of the
while-loop.

» while-loop iterated often only if k is large. (Assignment in line
6 strictly decreasing). while-loop iterated often leaves % small.

Hence we choose pot{i} — k.

Amortized cost

increase of potential during Op.

.

C;+ pot(i) — pot(i — 1)

To reach ; iterations of the while-loop, « > / is required.
~ > | previous operations need to have gone without decreasing

k during the while-loop but increasing % by 1 in line 8.

These operations have actual cost ¢, but are accounted with cost
¢ -+ 1 in our analysis.

(-~ Overcharging of ; to account for the cost of ; iterations of the
while-loop).

On the other hand C; — ¢ + ; holds for the iteration, however the
increase of potentialis —; (k is reduced by /, thus

pot(7) — pot(/ — 1) = —j) resp. —; + 1, if line 8 is evaluated after
the loop.

Hence amortized costs are << ¢ +; — ; + 1 — ¢ + 1. (Here the
previous overcharging and the cost of the while-loop are balanced,
because in amortized analysis an operation including iterations of the
while-loop is also rated with ¢ | 1 at most.)

Our discussion therefor leads to

Ci + pot{(i} —pot(i — 1) < c+1=0(1).

Summing the amortized costs of all iterations of the for-loop, we
get

Z (C; + pot{i) — pot(i — 1)) = total cost + pot{m) — pot(1).

2<i<im

Hence: pot(m) — pot(l) > 0 = Summed amortized costs are
upper bound of actual costs. This requirement is however fulfilled
trivially as % never gets negative and starts with O in line 3.

= Upper bound of

(m—1)-O(1) = O(m)

——

for the running time of our algorithm to compute the prefix
function.

Knuth-Morris-Pratt (KMP) algorithm

1 n:=|T|;

2 m=|P|;

3 // Compute prefix function Pi here

B q:=0;

5 for i:=1 to n do begin

6 while (g>0) and (P[q+1l]<>T[i]) do
7 q:=Pi[q];

8 if P[q+1]=T[i] then q:=q+1;

9 if g=m then do begin

10 print(’0ccurrence at shift ’,i-m);
11 q:=Pi[q];

12 end;

13 end:;

Remarks:

» KMP has (optimal) running time in O(m -+ n} which can be
proven by a similar analysis.

» The knowledge of 1> makes it possible do compute ¢ of
SMA(FP} in linear time.

» Comparing the naive method and the (optimized) KMP
algorithm by dividing the expected number of comparisons
both algorithms need on random texts we find

, 1 —
KMP/NAIVE — 1 — = — 4 &1

c 2 cm

So if m and ¢ are large enough both methods are almost

equal. TEJ

3) The Boyer-Moore algorithm
Application: ~ long, > relatively large.

» Core: Naive method: By setting =:=s+1 in lines 12 and 14
we get an implementation of the naive method.

» Notable: 7 is compared to the text from right to left.

» Speed-up: In case of a mismatch two heuristics (bad
character heuristic (Lambda), good-suffix heuristic (gamma))
give an increment for s which does not miss a feasible shift
and is usually greater than 1.

7
I

—

Worst case running time of the Boyer-Moore algorithm is in
O T — Pl+1)- P+ 2} (and usually in
O((|T|— |P|+1)-|P|}), as
» the computation of lambda takes (O | + |2} time,
» the computation of gamma takes ©(7} time and

» the algorithm does not use more than ©{ 7) time on each of
the at worst | /| — |7 + 1 shifts.

Practise: BM often the best choice as the worst case rarely
occurs and the two heuristics give relatively large increments on
the considered shifts. = sublinear (in in length of text) running
time. BM faster than optimized KMP algorithm.

4) Boyer-Moore-Horspool algorithm

Variation of BM with only one heuristic similar to the
bad-character heuristic. (Negative movement is avoided.)
Mismatch on comparing # with 7; 5, ; = /7 is moved to the
right by d(7;) positions, where

d(x):= min {k| k=|P|V Pp_x = x}.

1<k<|P

Intuition: 7, is brought to a match with a character of 7~ (if
possible). The minimizing guarantees that no potentially feasible
shift is omitted.

Running time: Worst case ©(| 7| - |7}, average case (sub)linear.
The constant of the linear term in the average running time is
asymptotical (| 7| — o)

1+ff‘ !
5 U\ERE)

6—-

L

a*-:-‘

—

5)Karp-Rabin algorithm

6)Algorithm of Aho and Corasick

This algorlthm finds all occurrences of a set of search terms in a
text (set matching problem) at the same time. This is achieved by
organising the strings in a search term tree, a directed tree
satisfying the following conditions:

» Each edge is labeled with a symbol from ..

- Edges leaving the same node are labeled with different
symbols.

- For each search term w there is exactly one node such that
the path from the root to this node is labeled with w.

» Each leave i1s associated with a search term.

5)Karp-Rabin algorithm

6)Algorithm of Aho and Corasick

This algorlthm finds all occurrences of a set of search terms in a
text (set matching problem) at the same time. This is achieved by

organising the strings in a search term tree, a directed tree
satisfying the following conditions:

- Each edge is labeled with a symbol from .

- Edges leaving the same node are labeled with different
symbols.

» For each search term w there is exactly one node such that
the path from the root to this node is labeled with w.

- Each leave is associated with a search term.

h=adas
P, = alac
¢
S

Searching in the text:

- Traverse the search term tree according to the letters of /.

- Reaching a node corresponding to a search term means we
have found this term.

» |f no outgomg vertex for the next symbol exists:

f links: Link from node v to node w such that a path
from the root to w is equal to the longest sufflx of the path
from the root to v.

X= Z ace, as, CQSCj

CE\E
¢ l

AL
’
Je

- Determining these links: Refer to 5 7}, the search term
tree is like a string matching automaton for a set of strings.

- Difference: failure links are not associated with symbols
from the alphabet.

- Traversing a failure link does not consume a symbol of the
text, but increase the current shift by the number of levels we
went up in the tree.

- It is possible that multiple failure links are traversed in direct
succession.

- If the current node is the root and there is no matching edge
we stay at the root and advance to the next symbol of the
text.

Suffix Trees

Idea: /" appears in /', if and only if 7 is a prefix of a suffix of /.
Definition

Let T ¢ 37 atext. A directed tree By — (V| E) with root r is
called a simple suffix tree for 7, if it satisfies the following
conditions:

L. Bt has exactly n leaves labeled with numbers 1 to n.

2. Every edge in B+ is labeled with a symbol from 7_.

3. All edges leaving an (internal) node are labeled differently.
4. The path from r to leaf i is labeled with T, ..

Method: Construction of a simple suffix tree 5.
Input: Text 7 < 2.7,

Step 1: Let 77— 7 -8, 5 oy let 2/ — 2 U {$}.
Step 2: Initialize £+ with childless root r.
Step 3: For / from 1 to 7 repeat:

» Traverse Bt starting at r along the path 7, - $ until node x,
reached by symbol 7., has no leaving edge matching 7, ..

» Append to x a linear list of nodes, the corresponding edges
labeled with 7, , - $.

» Label the new leaf with /.

String-Matching: Deciding with running time ©(7 }.
Finding all matches: Additional effort proportional to the size of
the subtree reached by 7.

Problem: A simple suffix tree may have size in Q{77 %)

Reason: Nodes with only one successor.

— Allow each (nonempty) word as label and eliminate unary
nodes. Words are represented by start- and end-position in the
text.

neye

10

Definition

Let T ¢ 37 3 text. A directed tree Bt — (V£ with root r is
called compact suffix tree for I, if it satisfies the following
conditions:

L.

B+ has exactly n leaves, labeled with numbers 1 to n.

2. Each internal node of 5+ has at least two successors.
3.
4

. Labels of edges leaving the same node start with pairwise

The edges of 5+ are labeled with substrings of | .

different symbols.

The path from the root to leaf i is labeled with T,
1 <7 <n.

Lemma
Let T ¢ 37 atext. A compact suffix tree By for T has O{n)

nodes. Labeling all edges takes O(nlog(n)) bits.

11

