String Algorithms
String-Matching:

Definition
Given a text T € X" and a string P € X", the string matching
problem is to determine all s € Ny, satisfying:

(Gve X weX*)(T = vPw).

The number s from this definition i1s named shift.
A shift is called feasible, if P is found at the respective place in T,
otherwise s is called infeasible.

Naive algorithm: Try all shifts s € [0, | T| — |P|] one by one.

Worst case running time: O(|P|-|T|). Eg. if P=2a", T = a",

m,neN, m<n. ? W
Reason of the slow running time: Knowledge about 7T gained in

previous steps is not used. If e.g. P = aaab and s = 0 is a feasible

shift, we already know that s =1, s = 2 and s = 3 are infeasible.

Thus algorithm is implemented in Java runtime library!

Efficient String Matching Algorithms

Here we only give an overview:

1) Using finite automata

Example: P = ababaca and T = abababacaba.

http://www.echalk.de
http://www.inf.fu-berlin.de/~fland
http://www.inf.fu-berlin.de/~knipping
http://www.inf.fu-berlin.de/~rojas
http://www.inf.fu-berlin.de/~tapia

Fundamental definition:

Definition
The suffix function op : £ — {0,1,...,|P|} of P is defined by . 5
S —
op(X) = kme?\]?{k | Pox O X}, e

i.e. op(X) is the length of the longest prefix of P being a suffix

of X (where P 71 X denotes that P is a suffix of X and Py is the
length k prefix of P).

Now with 0(q, a) := op(Poq,a), Vg € Q and Va € X a linear scan
of the text is sufficient to find all feasible shifts.
Preprocessing: O(m® - |<|)-algorithm to compute 4:

| Pl
m:=|P|; Y

for q:=0 to m do begin
for a in Sigma do begin
ki=min(m+1,q+2); // P[0..k] should be
// suffix of P[0..q]+a
repeat
k:i=k—1;
until (P[0..k] is suffix of (P[0..q]+a));
delta[q,a]:=k;
end :
end ;

» P[i..j] denotes substring F;; of P,

» operator + on strings describes concatenation.

2) Knuth-Morris-Pratt Algorithm (KMP)

Definition
Let P € ™ a string. The prefix function
Mp:{1,2,...,m} —{0,1,...,m— 1} of P is defined by

Mp(q) = Lré%x{k | k < g A Pox 3 Pog}

Example: For P = ababaca, [p(4) = 2 holds, since k = 2 is the
maximum value for which Py, 71 Py 4, kK < 4, holds. This leads to
the following situation:

These two matches need not be verified,
they can be inferred from lp(4) = 2.

g@abaca

P=ababaca

>

h a b+ T

R

A

-ﬂt
+7 Do

9§
m:=|P|;
Pi[1]:=0;
k:=0:

for q:=2 to m do begin
while (k>0) and (P[k+1]<>P[q]) do

k:=Pi[k];
if P[k+1]=P[q] then
k:=k-+1;
Pi[q]:=k;

= O O ~N O 01 W=

0 end;

L i

Running time: (amortized analysis using the potential method)

» Let the /-th operation Op; be the /-th iteration of the
for-loop. (Executing lines 7 through 9 yields constant cost c.).

» = Cost C; of Op; is ¢ plus number of iterations of the
while-loop.

» while-loop iterated often only if k is large. (Assignment in line
6 strictly decreasing). while-loop iterated often leaves k small.

Hence we choose pot(i) = k.

Amortized cost

increase of potential during Op;

.

Ci+ pot(i) — pot(i — 1)

To reach J iterations of the while-loop, k > j is required.
~» > J previous operations need to have gone without decreasing
k during the while-loop but increasing k by 1 in line 8.

These operations have actual cost ¢, but are accounted with cost
c + 1 in our analysis.
(~ Overcharging of j to account for the cost of j iterations of the

while-loop).

On the other hand C; = ¢ + J holds for the iteration, however the
increase of potential is —j (k is reduced by j, thus

pot(/) — pot(i — 1) = —j) resp. —j + 1, if line 8 is evaluated after
the loop.

Hence amortized costs are < c +j —j + 1 = c + 1. (Here the
previous overcharging and the cost of the while-loop are balanced,
because in amortized analysis an operation including iterations of the
while-loop is also rated with ¢ + 1 at most.)

Our discussion therefor leads to

Ci + pot(i) —pot(i — 1) < c+1=0(1).

Summing the amortized costs of all iterations of the for-loop, we
get

Z (C; 4 pot(i) — pot(i — 1)) = total cost + pot(m) — pot(1).

2<i<m

Hence: pot(m) — pot(1) > 0 = Summed amortized costs are
upper bound of actual costs. This requirement is however fulfilled
trivially as k never gets negative and starts with 0 in line 3.

= Upper bound of

(m—1)-0(1) = O(m)

—

for the running time of our algorithm to compute the prefix
function.

Knuth-Morris-Pratt (KMP) algorithm

1 n:=|T]|;

2 m:=|P|;

3 // Compute prefix function Pi here

4 q:=0;

5 for 1:=1 to n do begin

6 while (gq>0) and (P[q+1l]<>T[i]) do
7 q:=Pi[q];

8 if P[q+1]=T[i] then q:=q+1;

9 if g=om then do begin

10 print(’0Occurrence at shift ’, i-m);
11 q:=Pi[q];

12 end:

13 end;

Remarks:

» KMP has (optimal) running time in O(m + n) which can be
proven by a similar analysis.

» The knowledge of [1p makes it possible do compute § of

SMA(P) in linear time.

» Comparing the naive method and the (optimized) KMP
algorithm by dividing the expected number of comparisons
both algorithms need on random texts we find

1 1 —1
KMP/NAIVE =1 — = + — + &~ =
c

c? cm

So if m and c are large enough both methods are almost

equal. Tz]

3) The Boyer-Moore algorithm
Application: P long, X relatively large.

» Core: Naive method: By setting s:=s+1 in lines 12 and 14
we get an implementation of the naive method.

» Notable: P is compared to the text from right to left.

» Speed-up: In case of a mismatch two heuristics (bad
character heuristic (1ambda), good-suffix heuristic (gamma))
give an increment for s which does not miss a feasible shift
and is usually greater than 1.

7
I

[S—

Worst case running time of the Boyer-Moore algorithm is in
O((|T|—=|P|+1)-|P|+|X|) (and usually in
O((I T =[Pl +1)-[P])), as
» the computation of lambda takes O(|P| + |X|) time,
» the computation of gamma takes ©(|P|) time and

» the algorithm does not use more than ©(|P|) time on each of
the at worst | T| — |P| + 1 shifts.

Practise: BM often the best choice as the worst case rarely
occurs and the two heuristics give relatively large increments on
the considered shifts. = sublinear (in in length of text) running
time. BM faster than optimized KMP algorithm.

4) Boyer-Moore-Horspool algorithm

Variation of BM with only one heuristic similar to the
bad-character heuristic. (Negative movement is avoided.)
Mismatch on comparing P with T;_p;1; = P is moved to the
right by d(T;) positions, where

d(x):= min {k|k=|P|V Pp_x = x}.

1<k<|P|

Intuition: T; is brought to a match with a character of P (if
possible). The minimizing guarantees that no potentially feasible
shift is omitted.

Running time: Worst case ©(| T| - |P|), average case (sub)linear.
The constant of the linear term in the average running time is
asymptotical (| T| — o0)

1 1
7+0(5)
FIRNFE

=<6

—

Z1 [
6

r
b

— T
P

5)Karp-Rabin algorithm

6)Algorithm of Aho and Corasick

This algorithm finds all occurrences of a set of search terms in a P - da
text (set matching problem) at the same time. This is achieved by T K

organising the strings in a search term tree, a directed tree Pa,: asa <
satisfying the following conditions:
» Each edge is labeled with a symbol from 2. ¢ =
» Edges leaving the same node are labeled with different S
symbols. 4

» For each search term w there is exactly one node such that
the path from the root to this node is labeled with w. 1:5/%

» Each leave is associated with a search term.

5)Karp-Rabin algorithm

6)Algorithm of Aho and Corasick

This algorithm finds all occurrences of a set of search terms in a
text (set matching problem) at the same time. This is achieved by
organising the strings in a search term tree, a directed tree
satisfying the following conditions:

» Each edge is labeled with a symbol from 2.

» Edges leaving the same node are labeled with different
symbols.

» For each search term w there is exactly one node such that
the path from the root to this node is labeled with w.

» Each leave i1s associated with a search term.

Searching in the text:

» Traverse the search term tree according to the letters of T.

» Reaching a node corresponding to a search term means we
have found this term.

» If no outgoing vertex for the next symbol exists:
= failure links: Link from node v to node w such that a path
from the root to w is equal to the longest suffix of the path
from the root to v.

» Determining these links: Refer to SMA(P), the search term
tree is like a string matching automaton for a set of strings.

» Difference: failure links are not associated with symbols
from the alphabet.

» Traversing a failure link does not consume a symbol of the
text, but increase the current shift by the number of levels we
went up In the tree.

» It is possible that multiple failure links are traversed in direct
succession.

» If the current node is the root and there is no matching edge
we stay at the root and advance to the next symbol of the
text.

Suffix Trees

Idea: P appearsin T, if and only if P is a prefix of a suffix of T.

Definition

Let T € X" a text. A directed tree By = (V/, E) with root r is
called a simple suffix tree for T, if it satisfies the following
conditions:

1. By has exactly n leaves labeled with numbers 1 to n.

2. Every edge in Bt is labeled with a symbol from _.

3. All edges leaving an (internal) node are labeled differently.
4. The path from r to leaf i is labeled with T, ,,.

Method: Construction of a simple suffix tree Br.
Input: Text T € 2",

StepliLlet T'=T-9%, $&X; let ¥’ =X U{$}.
Step 2: Initialize B+ with childless root r.
Step 3: For / from 1 to n repeat:

» Traverse Bt starting at r along the path T, -$ until node x,
reached by symbol T, has no leaving edge matching T,..

» Append to x a linear list of nodes, the corresponding edges
labeled with T, 1, - 9.

» Label the new leaf with 1.

String-Matching: Deciding with running time ©(|P|).
Finding all matches: Additional effort proportional to the size of
the subtree reached by P.

Problem: A simple suffix tree may have size in Q(|T|? - |Z]).

Reason: Nodes with only one successor.

= Allow each (nonempty) word as label and eliminate unary
nodes. Words are represented by start- and end-position in the
text.

ITl=n_

—_—

w
IL;"L EJ:?,-,-.‘V\’ N2 /bZL\.. - %_Vl (M-w)
=1

’

Definition

Let T € X" a text. A directed tree By = (V, E) with root r is
called compact suffix tree for T, if it satisfies the following
conditions:

1. Bt has exactly n leaves, labeled with numbers 1 to n.
2. Each internal node of Bt has at least two successors.
3. The edges of Bt are labeled with substrings of T .
4

. Labels of edges leaving the same node start with pairwise
different symbols.

5. The path from the root to leaf i is labeled with T;,,
1 <i<n.

Lemma
Let T € X" a text. A compact suffix tree Bt for T has O(n)
nodes. Labeling all edges takes O(nlog(n)) bits.

