Exercise Sheet 1 for Computational Biology (Part 1), WS 13/14

Hand In: Until Monday, 11.11.2013, 10:00 am, email to wild@cs. . . or in lecture.

Problem 1

A (simple) suffix tree ${ }^{1} B_{T^{\prime}}$ for $T^{\prime}=T \cdot \$$ with text $T \in \Sigma^{n-1}$ and $\$ \notin \Sigma$ is a rooted directed tree with the following properties:
(1) $B_{T^{\prime}}$ has n leaves labeled 1 to n.
(2) Every edge in $B_{T^{\prime}}$ is labeled with a symbol in $\Sigma \cup\{\$\}$.
(3) All edges leaving one node are labeled differently.
(4) The path from the root r of $B_{T^{\prime}}$ to leaf ' i ' is labeled with $T_{i, n}$.

Show that the method for constructing a (simple) suffix tree given in lecture ${ }^{2}$ is correct, i. e., it outputs the unique (simple) suffix tree for T^{\prime}.

Problem 2

a) Give an infinite family $\left(T_{n}\right)$ of texts with $T_{n} \in\{a, b\}^{n-1} \$$ such that the number of nodes t_{n} of the corresponding simple suffix trees $B_{T_{n}}$ is quadratic in n, i.e., $t_{n}=\Theta\left(n^{2}\right)$.
b) Give a second infinite family $\left(T_{n}\right)$ of texts, for which the compact suffix trees $I B_{T_{n}}$ have worst case size, i.e., the number of nodes of $I B_{T_{n}}$ is maximal among all compact suffix trees for texts of the same size $\left|T_{n}\right|=n$. What is the worst case number of nodes?

[^0]
Problem 3

3 points

Design a linear time algorithm to compute the set of all maximal repeats of a text T along the lines given on pages 61 ff of the German lecture notes.

More precisely, for every maximal repeat P of $T \in \Sigma^{n}$, your algorithm is supposed to output one pair of indices (i, j) and its length $m=|P|$, such that P is found at positions i and j in T :

$$
T_{i, i+m-1}=T_{j, j+m-1}=P \quad \wedge \quad T_{i-1} \neq T_{j-1} \quad \wedge \quad T_{i+m} \neq T_{j+m}
$$

where we set $T_{0}:=\$=: T_{n+1}$ for $\$ \notin \Sigma$. The running time should be in $\mathcal{O}(n)$.

Problem 4

For two strings S and T over alphabet Σ, we define the overlap of S and T as

$$
\begin{equation*}
\operatorname{ov}(S, T):=\max \left\{|y| \mid y \in \Sigma^{\star} \wedge \exists x, z \in \Sigma^{+}: S=x y \wedge T=y z\right\} \tag{1}
\end{equation*}
$$

Design an algorithm to compute all pairwise overlaps of a given set of strings $\mathcal{T}=$ $\left\{T^{(1)}, \ldots, T^{(m)}\right\}$ over Σ, i. e. for all $i, j \in[m]$, compute ov $\left(T^{(i)}, T^{(j)}\right)$. The running time of your algorithm should be in $\mathcal{O}(n \cdot m)$, where $n:=\sum_{i=1}^{m}\left|T_{i}\right|$ is the total length of all strings in \mathcal{T}.

[^0]: ${ }^{1}$ as defined on page 49 of the German lecture notes
 ${ }^{2}$ see page 49 of the German lecture notes

