
Maximum Likelihood Analysis of Heap Sort

Ulrich Laube, Markus E. Nebel

October 10, 2008

Abstract

We present a new approach for an average-cases analysis of algorithms that
supports a non-uniform distribution of the inputs and is based on the maximum
likelihood training of stochastic grammars. The approach is exemplified by an
analysis of the average running time of heap sort. All but one step of our analysis
can be automated on top of a computer-algebra system. Thus our new approach
eases the effort required for an average case analysis exceptionally allowing for the
consideration of realistic input distributions with unknown distribution functions
at the same time.

1 Introduction

Finding a precise characterization of the behavior of an algorithm or a data structure,
given a few assumptions about the probabilistic distribution of the inputs, is the aim
of the analysis of algorithms. Typically the execution time or the amount of memory
used shall by studied. As best- and worst-case often occur with a rather low probability
the average-case is more informative, if the underlying probabilistic model is realistic.
But many times a realistic model is not known or one has to keep the mathematics of
the analysis manageable and thus falls back to a uniform distribution instead of a more
realistic one. And even if more complicated distributions like i.e. a Bernoulli model can
be handled mathematically we often have to admit that it still does not fit reality.

Our maximum likelihood approach presented in this paper avoids the two problems
mentioned. We are able to evaluate the expected performance while using a realistic
probabilistic model and at the same time keep the mathematics practicable. This is pos-
sible by supplementing the rules of a Chomsky-grammar with probabilities and training
them according to the maximum likelihood principle on real and hopefully typical inputs
of different sizes. The grammar itself is set up in such a way, that the words of it’s
language represent the flow of control through a program.

According to the ideas of Chomsky and Schützenberger [3] such a stochastic grammar
can be translated into a probability generating function for the generated language. Then
the expected value and higher moments of several parameters of the language are readily
available by standard generating function methods. This makes it easy to analyze the
expected running time of an algorithm as the underlying grammar will be right-linear
implying rational generating functions only.

1

In this case all the methods which are necessary for this type of analysis can be
performed automatically on a computer using computer-algebra, an automatic average-
case analysis for inputs that have a non-uniform distribution is possible. We have nearly
finished a prototype of such a system as a proof of concept. A software system that
allows an automatic average-case analysis in the uniform case was presented in [5].

After collecting the results and definitions needed in section 2 we will demonstrate
our approach by an analysis of heap sort in section 3.

2 Basic Definitions and Known Results

2.1 Stochastic Context-Free Grammars

We will use a generalization of context-free grammars by assigning probabilities to the
rules. This leads to stochastic context-free grammars (SCFGs) as found in [8] which are
commonly used in the area of natural language processing, see for example [12] and in
connection with RNA secondary structure prediction in bioinformatics, see for example
[4].

Definition 1 (stochastic context-free grammar). A stochastic context-free grammar is
a five-tuple G = (N,T,R, P, S) where N = {V1 = S, V2, . . . , Vk} is a set of variables or
non-terminal symbols, T = {a1, . . . , am} is a set of terminal symbols disjoint from N ,
R = {r1, . . . , rn} is a subset of N × (N ∪ T)?1, its elements rj = (Vi, ωj) are called rules
or productions. Additionally we denote by Ri = {rj | rj = (Vi, ωj) ∈ R} the set of all
rules with the same left-hand side Vi. P is a mapping from R into]0, 1] that assigns
each rule rj its probability pj. We write Vi → pj : ωj for a rule rj = (Vi, ωj) ∈ R with
P (rj) = pj. We require that ∑

{j|rj∈Ri}

pj = 1 i = 1, 2, . . . k

holds, that is, we have probability distributions on the rules with the same left-hand side.
The symbol S = V1 ∈ N is a distinguished element of N called the axiom or start symbol.
All sets in this definition are finite.

The language L(G) generated by a SCFG G is the set of all terminal strings or words
which can be generated by successively substituting all non-terminals according to the
productions starting with the axiom S. Such a derivation is called left-most if always the
left-most non-terminal is replaced next. The probability for such a derivation is given
by the product of the probabilities of all productions used. The probability of a word
generated by the grammar G is the sum of the probabilities of all its different left-most
derivations. Every left-most derivation corresponds uniquely to a parse tree of a word.
Clearly unambiguous languages are important here.

The probabilities on the rules thus induce probabilities on the words and parse trees
but it is a priori unknown whether a probability distribution on the entire language is

1When X is a set of symbols, X? denotes the set of all finite strings of symbols of X completed by
the empty string ε.

2

induced by a SCFG or not. A SCFG is called consistent (sometimes proper) if it provides
a probability distribution for the generated language, i.e.∑

w∈L(G)

p(w) = 1.

Example 1. The ambiguous SCFG S → 2
3 : SS, S → 1

3 : a is not consistent. As the first
rule is more likely than the second, each of the S’s is likely to be replaced with two more
S’s, thus the variable S multiplies without bound and the derivation never terminates.
No word is produced in this case and the sum above is less than one due to the missing
words. We will find a formal way to prove or disprove consistency later.

2.2 Training and Consistency of SCFGs

What we call the training of a grammar employs the maximum likelihood principle. On
a fixed sample from a larger population the maximum likelihood principle tunes the
free parameters of the underlying probability model in such a way, that the sample has
maximum likelihood, that is, other values for the parameters make the observation of the
sample less likely. In our setup the free parameters are the probabilities of the grammar
rules. Training the grammar then sets those probabilities in such a way that grammar
generates words that closely match the sample set of words provided for the training
with maximum likelihood.

The conditions for consistency of such a trained grammar has been investigated by a
number of scientists. A conjecture by Wetherell [14] proven in [2] states that assigning
relative frequencies found by counting the rules in the parse trees of a finite sample
of words from the language results in a consistent SCFG. A simpler proof was found
by Chi and Geman in [1]. The results cited above were obtained with more or less
explicitly stated assumptions on the grammar, sometimes chain and epsilon rules are not
allowed or the grammar must be unambiguous. In [13] these restriction are lifted. The
authors prove that the relative frequency, the expectation maximization and a new cross-
entropy minimization approach each yield a consistent grammar without restrictions on
the grammar.

We will use the fact that estimating the probabilities of a stochastic context-free
grammar by their relative frequencies yields a maximum likelihood estimate. Counting
the relative frequencies is especially efficient for unambiguous grammars used here, as
there is only one left-most derivation (parse tree) to consider.

2.3 Formal Power Series and SCFGs

Following [3] we can make use of the connection between formal languages and formal
power series and translate an unambiguous context-free grammar into a corresponding
structure generating function that counts the number of words of length n, see [6, 10].

Definition 2 (generating functions). The ordinary generating function of a sequence
(an)n≥0 is the formal power series

A(z) :=
∑
i≥0

ai · zi.

3

The probability generating function of a discrete random variable X is

P (z) :=
∑

k

Pr(X = k) · zk.

In case of an unambiguous SCFGs the grammar can be translated into a probability
generating function P (z) where the coefficient Pr(X = k) is the probability that a word
of length k is generated. By evaluating P (1) =

∑
k Pr(X = k) we can check whether the

SCFG is consistent.

Example 2. The unambiguous CFG G =
(
{S}, {(,)}, {S → (S)S, S → ε}, S

)
translates

into the equation S(z) = z2S(z)2 + 1, which has the solution S(z) = 1−
√

1−4z2

2z2 = 1 +
z2 + 2z4 + 5z6 + 14z8 + 42z10 + O(z12). It can easily be verified that the coefficients
at zn count the number of words of length n generated by G. The unambiguous SCFG
G′ =

(
{S}, {(,)}, {S → 1

3 : (S)S, S → 2
3 : ε}, S

)
translates into the equation S′(z) =

1
3z

2S′(z)2 + 2
3 , which has the solution S′(z) = 3−

√
9−8z2

2z2 = 2
3 + 4

27z
2 + 16

243z
4 + 80

2187z
6 +

O(z8). Here the coefficient of zn is the probability that G′ produces a word of length n
and verifying that S′(1) = 1 holds, confirms that G′ is consistent.

As seen in Example 2 the interesting information are the coefficients “hidden” in
the generating function. Extracting information about the coefficients is possible by
singularity analysis. However as the generating functions that emerge in the rest of the
paper are rational functions, the SeriesCoefficient command of Mathematica 6 is able
to provide exact expression for the coeffcients.

3 Maximum Likelihood Analysis of Heap Sort

The maximum likelihood analysis of heap sort performed in this section serves as a
showcase, as other algorithms can be analysed too and a variation of this method works
for data structures as well, see [11].

As the running time of an algorithm depends on the actual implementation and the
machine model used, we opt for Knuth’s MIX computer and the implementation from [9]
as they are well documented and as results are available for later comparison. However
our method is not connected to any specific machine model and works as general as any
other technique for performing an average-case analysis.

First we have to describe how we derive the SCFG from the algorithm. The words
of the language generated by the grammar will describe the possible flows of control.
The algorithms in Knuth’s books are written in MIXAL the MIX assembly language and
their instructions are easily translated into the rules of a SCFG by the following three
rules:

1. An unconditional JMP from line i to line j becomes: Li → 1 : liLj .

2. A conditional JMP instruction in line i that may jump to line j becomes: Li →
pi : liLj | 1− pi : liLi+1 because the jump may be taken or not.

3. All other instructions yield: Li → 1 : liLi+1.

4

When m is the number of the last line of the program we add one final rule Lm+1 → ε
thereby allowing the grammar to produce terminal strings (which corresponds to termi-
nation of the program).

The words described by such a grammar are just sequences of the line numbers li of
the instructions executed. As the grammars are right-linear we obtain regular languages.
This is noteworthy as regular languages always have rational structure generating func-
tions, see [10]. We process the SCFGs further to reduce their size, e.g. removing chain
rules, but strictly speaking this is not necessary.

In the next step a homomorphism h is used to substitute the li’s by h(li) = ycost(li), as
we do not care about the actual line numbers but about the cost (denoted by cost(li)) it
implies. In our setup the function cost just looks up the cost of the MIXAL instructions,
as shown in the table on the inside of the back cover of Knuth’s books. This substitution
is however quite flexible, it allows us to introduce the parameter (here the running time)
which we are interested in, into the grammar and thus into the generating function which
we want to build.

As the coefficient at zn in the generating function should “count” the parameter we
are interested in, subject to the size of the input n, we have to make sure that the correct
number of z’s is inserted into the grammar to be able to keep track of the size of the
input. In case of heap sort we “mark” the instruction(s) that moves the keys to their final
positions with a z each. The code that performs this task is found at the lines 27 and 30
in Program H on page 146f in [9]. Thus when the sorting is finished we have n z’s and
thus the cost is correctly contributed to the coefficient at zn. Note that the placement
of the variables z, taking care of one or more elements of the input, is the only part of
our analysis which has no obvious algorithmic automation, as it requires understanding
of the algorithm under examination.

The rules of the grammar are now interpreted as equations. The equations are of
course linear and after eliminating the variables we can find the solution, i.e. the gen-
erating function, which is a rational function in z and y as mentioned before. Turning
Program H from page 146f in [9] into a grammar yields:

L1 → 1 : idptL21 L1 = y12L21

L11 → p11 : jolrL16 | (1− p11) : jrL16 L11 = p11y
7L16 + (1− p11)y3L16

L16 → p16 : jstL21 | (1− p16) : jwL24 L16 = p16y
6L21 + (1− p16)y3L24

L21 → p21 : jL22 | (1− p21) : jcsL11 L21 = p21yL22 + (1− p21)y5L11

L22 → p22 : jwL24 | (1− p22) : jlrL16 L22 = p22y
3L24 + (1− p22)y5L16

L24 → p24 : jgzL29 | (1− p24) : jdptL21 L24 = p24y
8zL29 + (1− p24)y11L21

L29 → p29 : jezL29 | (1− p29) : jptL21 L29 = p29y
3z + (1− p29)y8L21

Removing the chain rules gives a pair of rules for every conditional jump shown on the
left with blocks of instructions that belong together, abbreviated with letters typeset
with an upright font. The homomorphism h now replaces the non-italic letters in the
rules in such a way that we track the running time in the exponent of symbol y in the

5

equations on the right. Back substitution yields the solution

H(z, y) =
p24p29y

27z2 · h(y)
1− p16p21p̄22y12 − p16y14 · g(y)−

(
p24p̄29zy5 + p̄24

)
y15 · h(y)

(1)

with

g(y) = p̄21p̄11 + p21p11y
4, p̄i = 1− pi,

h(y) = p̄16y
7 · g(y) + p21p̄16p̄22y

5 + p21p22.

As a consistent SCFG induces a probability distribution on the entire language we do
not automatically have a probability distribution if we look on a subset of the language.
To get a distribution on the subset we have to normalize the probabilities involved. This
is achieved by dividing through the probability of the subset, in our case the probability
that the flow of control string was recorded for an input of size n. Accordingly we have
to determine the quotient of the weighted cost of all inputs of size n and the probability
for such an input2:

H(n) :=
<zn, ∂

∂yH(z, y) |y=1 >

[zn]H(z, 1)

= 2 + 5n+
(n− 1)

(
22 + 4p11(1− p21)− p21

(
2 + 5p22)− 8p16(1− p21p22)

)
(1− p16

(
1− p21p22)

)
p24

. (2)

This solution still contains the probabilities pi, and we use the maximum likelihood
principle to train them on five generate sets of integer sequences. Each set is based on
a different probability model (random permutation (rp), Gauss distributed (gd), nearly
ordered ascending (noa) and descending (nod), many duplicates (md)) and consists of
sequences with lengths from 10 to 860 in steps of 10. For each size 100 sequences are
randomly generated and sorted with heap sort running on a MIX virtual machine from
the GNU MIX Development Kit. For each input we record the flow of control as a string
of line numbers and parse those words subsequently. The number of occurrences of each
rule in the parses is counted for each size separately.

To extend the measurements to input sizes beyond 860 we perform a general linear
least squares fitting. Here “general” refers to the fact, that the model function is a linear
combination of basis functions and their products, which themselves can be nonlinear, but
the model function’s dependence on the parameters is linear. The set of basis functions is
chosen according to the algorithm to be analyzed. E.g. if the algorithm contains nested
loops, some of the numbers are likely to grow with Θ(n2) or even Θ(n3), thus we include
n2 or n3 in the set of basis functions as well as a linear and constant term. Likewise if
the algorithm splits the input repeatedly into halves or operates on a tree-like structures
we would expect some numbers to grow with Θ

(
ln(n)

)
or Θ

(√
n
)

and thus we include
them in the set of basis functions.

This provides us with a function in n for every rule in the SCFG that estimates
the number of times the rule appears in a parse of a “flow of control string” for an

2Taking coefficients of a generating function A(z) is denoted by [zn]A(z) and returns an. As this
notation may be ambiguous we use <zn, A(z)> synonymously.

6

·

·

·

·
·

·

·
··

··
·
·
·
····

···
··

·
··

···········
······

·····
··

·························
···········

0 200 400 600 800
n0.40

0.42

0.44

0.46

0.48

0.50
random permutation

+

+

+

+
+

++
+
++

+
+
++++++

+++++
+
+++

++++++++++
++++++++

+++
++

++++++++++++++++++++++++++
++++++++++

0 200 400 600 800
n0.40

0.42

0.44

0.46

0.48

0.50
Gauss distributed

�

�

�

�

�

�

�

��
�

�

�
�

�
��

��

���
�
�
�
��

�
�
�
�������

�
������

���
�
��

�
�
�
�
�
�������������������

��
�����������

0 200 400 600 800
n0.40

0.42

0.44

0.46

0.48

0.50
nearly ordered ascending

*

*

*

*
*

*

**

*

**

*

*
*
*
*

*

*
*

*
*
*

**

**
*
*
*

**
*
*
*
*

**

**
**

0 200 400 600 800
n0.40

0.42

0.44

0.46

0.48

0.50
nearly ordered decending

ø

ø

ø

ø

ø

ø

ø
ø

øø

ø

ø

ø

øøø

ø

ø

ø

ø
ø

ø
ø

ø

øøø
ø

øøøø
ø

ø

øøø

øøøøøø
øø

øø
øø

ø
ø

ø
øø

øøøøø
øøøøøø

øøøøøøøøøøøø
øøøøøøøøø

0 200 400 600 800
n0.40

0.42

0.44

0.46

0.48

0.50
many duplicates

Figure 1: Probability p11 exhibits a periodic oscillation, in case of almost reversely
ordered sequences the oscillation is shifted.

input of size n. The relative frequencies for each grammar rule are obtained by simply
dividing each function by the sum of the functions of every rule with the same left-hand
side, thereby ensuring that after the fitting the relative frequencies still sum up to one.
Now the training of the SCFGs is complete as the relative frequencies are a maximum
likelihood estimate for the unknown probabilities of the grammar rules. As already noted
in [9] when comparing the probabilities for the different input distributions we observe
that heap sort is quite insusceptible to differently distributed inputs.

The trained probability functions p11(n), p16(n), p21(n), p22(n), p24(n) are now in-
serted into (2) and dividing the leading coefficients of the nominator and denominator
of (2) yields the following asymptotic results:

Hrp(n) = 23.65 · n ln(n) +O(n) Hgd(n) = 23.63 · n ln(n) +O(n)
Hnoa(n) = 23.72 · n ln(n) +O(n) Hnod(n) = 22.86 · n ln(n) +O(n)
Hmd(n) = 22.79 · n ln(n) +O(n)

In [11] the authors prove that the maxmimum likelihood analysis as performed above,
finds the average case result, thus we can compare it to Knuth’s empirical result from
page 148 in [9]: 23.08 · n ln(n).

A closer look at probability p11 reveals, that the tree structure of the heap has a subtle
influence, see Figure 1. Whenever the number of keys is near

∑k
i=0 2i for a suitable k,

indicated by the vertical lines in the plots, the probability peaks.
∑k

i=0 2i is the number
of nodes in a binary tree with height k, that is completely filled. Interestingly for almost
reversely ordered inputs the periodic behavior is shifted. Such a periodic behavior is not
captured by the functions used for the least squares fitting. We allowed experimentally
“Fourier polynomials”, that are truncated Fourier series, as basis functions in our fitting
process, and we were able to capture the periodic behavior, but as the improvement in
the results is less than the variance due to the randomness, this is not worth the effort.

7

3.1 Further results for other parameters

Changing the homomorphism h allows us to track the average number of key comparions
in the exponent of symbol y, here h(b) = h(r) = y and h(·) = ε otherwise, we find:

Crp(n) = 2.97 · n ln(n)− 7.13n+ o(n) Cgd(n) = 2.97 · n ln(n)− 7.08n+ o(n)
Cnoa(n) = 3.00 · n ln(n)− 6.41n+ o(n) Cnod(n) = 2.84 · n ln(n)− 7.29n+ o(n)
Cmd(n) = 2.86 · n ln(n)− 7.09n+ o(n)

The average number of interchanges is found by adjusting the homomorphism h once
more: h(s) = h(w) = h(g) = y and h(·) = ε otherwise:

Irp(n) = 1.49 · n ln(n)− 1.42n+ o(n) Igd(n) = 1.49 · n ln(n)− 1.40n+ o(n)
Inoa(n) = 1.50 · n ln(n)− 0.83n+ o(n) Inod(n) = 1.42 · n ln(n)− 1.78n+ o(n)
Imd(n) = 1.43 · n ln(n)− 1.57n+ o(n)

For random inputs Knuth reports 2.885 ·n · ln(n)−3.042 ·n− ln(n) for the average number
of key comparisons and 1.443·n·ln(n)−0.87·n−1 for the average number of interchanges.
In [7] on page 165 the results of a simulation of heapsort implemented in C are reported.
The average number of key comparisons is given as 2.885 · n · ln(n)− 3.0233 · n and the
average number of interchanges is given as 1.443 · n · ln(n)− 0.8602 · n.

3.2 Calculating higher moments

Deriving results for the variance of the different parameters is technically possible, by
using the well known formulars for generating functions, but does not yield accurate
results. This is due to the fact, that the right-linear grammar introduced before is more
general than necessary. In case of heapsort it’s language contains infinitely many words
that are valid paths in the corresponding automaton, but they would never occur as
flows of control for real inputs. For example the loops in the program are finished after
a certain number of iterations. However in the corresponding automaton the loops can
be traversed arbitrarily often. The probability for this is small but still positive thus
the generating function respects all the cases that would never occur for real inputs.
In our experiments the calculated variance had the correct asymptotic growth but the
coefficient was too large compared to actual variance of the sample inputs used for the
training the grammars.

Even if the grammar only reproduces the valid flows-of-control strings there is another
cause that hinders the calculation of the variance. Knuth’s version of heapsort uses the
siftup-subroutine in two phases, the heap creation and the selection phase, but we only
assign one set of probabilities to the jumps in the siftup-subroutine, thus averaging the
two phases and thereby giving up information. To clarify the before mentioned effects,
imagine a source that produces strings of ones and zeros, where both symbols have
probability 1/2 and a second source that produces 0-1-strings of the form 0k1k. In both
cases we would set the probabilities in a grammar trained on both sets of 0-1-strings
to 1/2, but the variance of the number of ones in the two sets of 0-1-strings for a fixed
length is quite different, positive in the first case and zero in the second case. We are not

8

able to distinguish the two cases by means of right-linear grammarswith a finite number
of non-terminals.

A slight improvement in the calculation of the variance was possible by changing the
grammar to make a distinction whether the jump before the current one was taken or not.
This allows one step dependencies to be taken into account and can be extended to allow
for more steps. However the size of the grammar and the number of probabilities that
have to be trained increase with every additional step and quickly become not feasible.

4 Conclusions

The probabilities of the rules are simply the probabilities for the various conditional
jumps being taken or not. Instead of training them, they could be derived in an abstract
manner by inspecting the profile of an algorithm. The profile is just the number of times
each instruction is executed. Together with Kirchhoff’s law one can deduce the number
of times a jump is taken respective not taken. These numbers of course depend on various
properties of the inputs, e.g. the number of left-to-right minima in case of permutations.
Expressing these properties for non-uniform distributions of the input is the difficult part
of a common average-case analysis.

Our new approach to describe the flow of control via stochastic context-free grammars
avoids such tedious computations. Deriving exact results for the average performance is
easily possible for different parameters and distributions.

Moreover, after a grammar has been trained on a set of inputs the resulting set of
probabilities provides full information on the corresponding algorithm. Hence we are
able to conserve the result of training by just storing the probabilites. If later we aim
for studying a parameter we had not in mind during the training this is no problem at
all; we just have to use a different homomorphism for introducing the parameter e.g.
a different function cost(li). for weighting the instructions of the algorithm. This is
impossible for a plain simulation as no statistics have been collected on unconsidered
parameters beforehand. Only an expensive rerun of the entire simulation would allow
other parameters to be analyzed in that case.

When based on right-linear grammars, all steps carried out during the maximum
likelihood analysis can be performed automatically within a computer-algebra system,
with the only exception of capturing the size of the input by introducing the symbol
z as some understanding of the algorithm is required. Thus our approach eases the
effort required for an average case analysis exceptionally allowing for the consideration
of realistic input distributions with unknown distribution functions at the same time.

Further interesting questions are: Which probability distributions can be modeled by
a SCFG? Is there any influence on the results obtained by changing the language and/or
the grammar assuming that the same objects respective algorithms are encoded? Is the
placment of the “marker” z tractable? Are there grammars that allow a good estimation
of the variance? All this should be considered in further investigations.

9

References

[1] T. Chi and S. Geman: Estimation of Probabilistic Context-Free Grammars, Compu-
tational Linguistics 24(2), 299–305, 1998.

[2] R. Chaudhuri, S. Pham and O. N. Garcia: Solution to an Open Problem on Proba-
bilistic Grammars, IEEE Trans. on Computers C-32(8), 748–750, 1983.

[3] N. Chomsky and M.-P. Schützenberger: The Algebraic Theory of Context-Free
Languages, In Computer Programming and Formal Languages, P. Braffort and D.
Hirschberg (eds.), North Holland, 118–161, 1963.

[4] R. Durbin, S. Eddy, A. Krogh and G. Mitchison: Biological sequence analysis, Prob-
abilistic models of proteins and nucleic acids, Cambridge Universiy Press, 1998.

[5] P. Flajolet, B. Salvy and P. Zimmermann: Automatic average-case analysis of algo-
rithms, Theor. Comput. Sci. 79(1), 37-109, 1991.

[6] P. Flajolet and R. Sedgewick: Analytic Combinatorics, web edition 2007, to be pub-
lished in 2008 by Cambridge University Press.

[7] G. H. Gonnet and R.Baeza-Yates: Handbook of Algorithms and Data Structures,
Addison-Wesley 1991, ISBN: 0-201-41607-7.

[8] T. Huang and K. S. Fu: On Stochastic Context-Free Languages, Information Sciences
(3), 201–224, 1971.

[9] Donald E. Knuth: The Art of Computer Programming, Volume 3: Sorting and
Searching, Second Edition, Addison Wesley, 1998.

[10] W. Kuich: Semirings and Formal Power Series: Their Relevance to Formal Lan-
guages and Automata, Chapter 9 in Handbook of Formal Languages, Vol. 1: Word,
Language, Grammar, G. Rozenberg and A. Salomaa (eds.), 609–677, 1997, ISBN-10:
3-540-60420-0.

[11] Ulrich Laube and Markus E. Nebel: Maximum Likelihood Analysis of Algorithms
and Data Structures, submitted to Theor. Comput. Sci.

[12] Christopher D. Manning and Hinrich Schütze: Foundations of Statistical Natural
Language Processing, MIT Press June 1999, ISBN-10: 0-262-13360-1, ISBN-13: 978-
0-262-13360-9.

[13] M.-J. Nederhof and G. Satta: Estimation of Consistent Probabilistic Context-free
Grammars, In Proc. of the HLT-NAACL, New York, USA, 343–350, 2006.

[14] C. S. Wetherell: Probabilistic Languages: A Review and some Open Questions,
Computing Surveys 12(4), 361–379, 1980.

10

