Exercise Sheet 7 for Combinatorial Algorithms, SS 13

Hand In: Until Monday, 17.06.2013, 12:00, box in the group's hallway or email to wild@cs.uni... .

Problem 11

We consider the following refined bipartite matching problem.
Given two sets $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ of players with rankings of the individuals of opposite type, i. e. for each a_{i}, there is a total preference relation ${ }^{1}$ $\prec_{a_{i}} \subseteq B \times B$, and likewise for every b_{i}, we have the relation $\prec_{b_{i}} \subseteq A \times A$. We say that " c prefers x to y " iff $x \prec_{c} y$.

A (bipartite) matching $M \subseteq A \times B$ of A and B is a Nash-matching, when there are no two players $a \in A$ and $b \in B$ fulfilling (all of) the following properties:
(NM 1) M matches a with $b^{\prime} \in B$ and b with $a^{\prime} \in A$, where $a \neq a^{\prime}$ and $b \neq b^{\prime}$.
(NM 2) $b \prec_{a} b^{\prime}$.
(NM 3) $a \prec_{b} a^{\prime}$.
Informally speaking, a Nash-matching is a matching where no two individuals have an incentive to leave their current matching partners in order to form a new pair.
a) Show that there always exists a Nash-matching of A and B by describing an algorithm for constructing such a matching.

You may skip the running time analysis of your algorithm, but make sure you prove its correctness.
b) Prove or disprove:

For any $n \geq 2$, there is a Nash-matching for certain preference relations that contains a pair (a, b), where a likes b least of all B-players and likewise b prefers all other A-players to a.

[^0]c) Prove or disprove:

For any $n \geq 2$, there is a Nash-matching for certain preference relations that contains players $a \in A$ and $b \in B$, which are both paired with their least preferred partners, but they are not paired with each other.
d) Prove or disprove:

For any $n \geq 2$, there is a Nash-matching for certain preference relations where no player is paired with its most preferred partner.

[^0]: ${ }^{1}$ The relations are total orders, i. e. any two elements b, b^{\prime} are either equal or $b \prec_{a_{i}} b^{\prime}$ or $b^{\prime} \prec a_{i} b$.

