

Issue Date: 05.06.2013 Version: 2013-06-20 10:39

8th Exercise sheet for Advanced Algorithmics, SS 13

Hand In: Until Wednesday, 12.06.2013, 12:00am, Exercise sessions, hand-in box in stairwell 48-6 or email.

Problem 17

Define ZPP the class of decision problems that can be decided by polynomial-time Las Vegas algorithms. Define RP, BPP and PP similarly for OSE-MC, TSE-MC and UE-MC algorithms, respectively.

Show (at least) three of the following statements:

- a) $\mathcal{P} \subseteq ZPP \subseteq RP \subseteq BPP \subseteq PP$
- b) $RP \subseteq \mathcal{NP}$
- c) $ZPP = RP \cap co-RP$
- d) $\mathcal{NP} \subseteq \text{co-RP} \implies \mathcal{NP} = \text{ZPP}$
- e) $\mathcal{NP} \cup \text{co-}\mathcal{NP} \subset PP$

Problem 18

Argue why the definitions of "randomized δ -approximation algorithm" and "randomized δ -expected approximation algorithm" are not equivalent.

Can you give an algorithm for a natural problem that is one, but not the other?

Can you give a problem that can be solved with one, but not the other kind?

Problem 19

Consider the following problem P:

Input: Digraph G = (V, E).

Solutions: Acyclic spanning subgraph G' = (V, E') of G.

Goal: Maximise |E'|.

And furthermore the algorithm A:

- 1. Order V randomly.
- 2. Select as E'
 - all forward edges (w.r.t. the order from 1.) with probability $\frac{1}{2}$ and
 - all backwards edges otherwise.

Show that A is a randomized 2-expected approximation for P.

Problem 20

Consider the Weighted Vertex Cover problem, that is:

Input: A graph G = (V, E) with vertex weights $w : V \to \mathbb{N}$.

Solutions: Sets of nodes $C \subseteq V$ so that every edge is covered, i. e. $u \in C$ or $v \in C$ for all $\{u, v, v\} \in E$.

Goal: Minimise cover cost $w(C) = \sum_{v \in C} w(v)$.

And the algorithm A:

```
\begin{array}{l} \texttt{C} = \emptyset \\ \texttt{while E} \neq \emptyset \ \{ \\ \texttt{select e} = \{ \texttt{v,t} \} \in \texttt{E} \\ \texttt{randomly choose x} \in \{ \texttt{v,t} \} \ \texttt{with Pr[x = v]} = \frac{w(t)}{w(v) + w(t)} \\ \texttt{C} = \texttt{C} \cup \{ \texttt{x} \} \\ \texttt{E} = \texttt{E} \setminus \{ \texttt{e} \mid \texttt{e} \ \texttt{incident of x} \} \\ \texttt{return C} \end{array}
```

Show that A is a randomized 2-expected approximation algorithm for Weighted Vertex Cover.