

Issue Date: 29.05.2013 Version: 2013-05-28 20:56

# 7th Exercise sheet for Advanced Algorithmics, SS 13

Hand In: Until Thursday, 05.06.2013, 12:00am, Exercise sessions, hand-in box in stair-well 48-6 or email.

## Problem 12

We have seen two different definitions of Las Vegas algorithms in class. Show that they are equivalent in a complexity-theoretic sense, that is

P can be solved by an  $LV_{a}$  algorithm in expected time  $\Theta(f)$ 

 $\iff$  P can be solved by an LV<sub>b</sub> algorithm in expected time  $\Theta(f)$ 

for some problem P and some function  $f : \mathbb{N} \to \mathbb{N}$ .

### Problem 13

Show that any one-way OSE-MC algorithm for Equality<sub>n</sub> has communication cost of at least n (bits).

**Hint:** For partial virtual credit, show the bound in a simpler setting; assume one of  $C_1$  and  $C_2$  has to be deterministic.

#### Problem 14

Give a TSE-MC-algorithm for Equality<sub>n</sub> with communication complexity in  $\mathcal{O}(\log n)$ . Show that your algorithm has the necessary properties.

**Note:** You may assume that n is sufficiently large, that is your algorithm may violate the TSE-MC restrictions for finitely many n.

# Problem 15

How do you construct a decider for L given an OSE-MC-algorithms for L and  $\overline{L}$ , respectively? Justify your answer.

## Problem 16

a) Give algorithm A that generates random permutations of the numbers  $1, \ldots, n$ . Each permutation is to have the same probability.

Show that your algorithm has the desired property and determine  $\text{Exp-Time}_A(n)$  as well as  $\text{Random}_A(n)$ .

b) Which of the classes of randomized algorithms known from lecture does A belong to?