
TU Kaiserslautern
AG Algorithmen und Komplexität

Issue Date: 17.05.2013
Version: 2013-05-24 15:26

Exercise Sheet 5 for
Combinatorial Algorithms, SS 13

Hand In: Until Monday, 03.06.2013 , 12:00,
box in the group’s hallway or email to wild@cs.uni... .

Problem 6 2 + 2 points

Let G = (V, E) be a simple graph with integral edge capacities c : E → N. (We assume,
no lower capacities are given, resp. they are all zero l(e) = 0.)

Proof or disprove:
a) If all capacities are even numbers, i. e. N = 2N = {2n | n ∈ N0}, then there is a

maximal (s, t)-flow f∗ with even flow values only, i. e. ∀e ∈ E : f∗(e) ∈ N .

b) If all capacities are odd numbers, i. e. N = 2N + 1 = {2n + 1 | n ∈ N0}, then there
is a maximal (s, t)-flow f∗ with odd flow values only, i. e. ∀e ∈ E : f∗(e) ∈ N .

Problem 7 3 points

In applications, we often are not interested in a maximal flow, but rather would like to
answer the following decision problem: Does a given network with its capacities allow
to transmit a certain amount of flow from certain sources to certain sinks? For example,
consider a waste water system where at some nodes a certain amount of water per time
is added and this water has to be moved to a different node.

Formally, we model this as feasible flow problem: Given a simple graph G = (V, E) with
edge capacities c : E → R≥0 and excess b : V → R at the nodes, does there exist a
feasible flow f : E → R with

∀v ∈ V b(v) +
∑
e∈E

e=(u,v)

f(e) =
∑
e∈E

e=(v,u)

f(e) and (1)

∀e ∈ E 0 ≤ f(e) ≤ c(e) ? (2)



Exercise Sheet 5 Combinatorial Algorithms

We call a node v with positive excess b(v) > 0 a source and one with negative excess
b(v) < 0— i. e. a node with demand —a sink.

Show that the feasible flow problem can be reduced to themax flow problem, i. e. describe
an algorithm that solves the feasible flow problem by calling a max flow algorithm as
subroutine.

Problem 8 4 points

We consider the following scheduling problem: Given m identical machines M1, . . . , Mm,
which can operate in parallel, and n jobs to be finished in time.

Each job j has a processing time pj ∈ N, which is the number of time slots a machine
needs to finish j. Moreover, j cannot be started before it becomes known after its
release date rj ∈ N and it must be completed upon its deadline dj ∈ N. We always
assume dj ≥ rj + pj . Time is given in discrete intervals (cf. the unix epoche).

Each machine can process at most one job at a time and a single job cannot be worked
on in parallel. However, we allow costless preemption, i. e. we may interrupt execution
of jobs at any time and continue processing later, possibly on another machine, without
any additional cost.

The problem consists in deciding whether there is a schedule of jobs onto machines, such
that all jobs are finished before their deadlines—and in computing such a schedule if it
exists.

Design an algorithm for solving this problem in time polynomial in the length of the
input. Partial credit is given to less efficient solutions.

Hint: Model the problem as max flow instance.

2 / 2


	Problem 6
	Problem 7
	Problem 8

