5th Exercise sheet for Advanced Algorithmics, SS 13

Hand In: Until Wednesday, 22.05.2013, 12:00am, Exercise sessions, hand-in box in stairwell 48-6 or email.

Problem 8

In lecture, we have seen a procedure to determine optimal Vertex Covers in time $\mathcal{O}\left(1.33^{k}\right)$ using search trees.
a) Show that case 3 (regular graph) occurs at most three times in every branch!
b) If case 3 could occur arbitrarily often, how large would the largest search trees be?
c) If only the number of 2-regular graphs was bounded, how large would the largest search trees be?

Problem 9

a) Assuming parameter k in an input for Closest Substring is minimal and s_{1} is not already a feasible solution, prove or disprove that algorithm $\operatorname{CSd}\left(s_{1}, k\right)$ can find every feasible (and therewith optimal) solution.
b) We consider a restricted version of the Closest Substring problem. We again require k to be optimal, and furthermore that there are input words s_{i} and s_{j} with $d_{H}\left(s_{i}, s_{j}\right)=2 k$.

Show that this problem can be solved by an algorithm with runtime in $\mathcal{O}\left(4^{k}\right)$.

