
Random Generation of RNA Secondary Structures

According to Native Distributions

Markus E. Nebel, Anika Scheid∗,†

Department of Computer Science, University of Kaiserslautern, Germany
{nebel,a scheid}@cs.uni-kl.de

Abstract

In this article, we present a new algorithm for the (non-uniform) generation of RNA secondary
structures of a given fixed size. We address the random generation of these structures according to
a realistic distribution obtained from real-life data, motivated both by bioinformatics and computer
science applications. In fact, structures can be generated at random according to an arbitrary dis-
tribution, which is given by adding a set of statistical parameters (that is observed from a particular
database of real-life RNA molecules) to a very detailed context-free grammar (that models the class
of RNA secondary structures as realistic as possible by distinguishing between all known motifs in
RNA structure).
Briefly, the algorithm extends on the well-known recursive method for (uniform) random genera-
tion and uses the popular framework of admissible specifications of combinatorial classes, yielding
weighted combinatorial classes which allow for non-uniform generation by means of unranking. After
a preprocessing time in O(n2) for the computation of all weighted class sizes, a set of m random
secondary structures of a given structure size n can be computed in worst-case time complexity
O(m · n · log(n)). A number of experimental results shows that our random generation method pro-
duces realistic output, at least with respect to the appearance of the different structural motifs. The
algorithm is available as a webservice at http://wwwagak.cs.uni-kl.de/NonUniRandGen and can be
used for generating random secondary structures of any specified RNA type.

1 Introduction

The topic of random generation algorithms (also called samplers) has been widely studied by computer
scientists. As stated in [FFP07], it has been examined under different perspectives, including combina-
torics, algorithmics (design and/or engineering), as well as probability theory, where two of the main
motivations for random sampling are the testing of combinatorial properties of structures (e.g. conjec-
tured structural properties, quantitative aspects), as well as the testing of properties of the corresponding
algorithms (with respect to correctness and/or efficiency).
As considers software engineering, the so-called random testing approach is commonly used to test im-
plementations of particular algorithms, as it is usually not feasible to consider all possible inputs and
unknown which of these inputs are among the most interesting ones. In fact, this approach requires for
the generation of random instances of program inputs that obey various sorts of syntactic and semantic
constraints (where the random instances usually ought to be of a preliminarily fixed input size in order
to be compareable to each other).
In the Bioinformatics area, algorithms for generating random biological sequences have been investigated
for a long time (see e.g. [Fit83, AE85]). As stated in [DPT03], random sequences are a topic of great
interest in genome analysis, since according to a powerful paradigm, they represent the background noise
from which the actual biological information must differentiate. Thus, random generation of combinatorial
objects can be used in this context for simulations studies in order to isolate signal (unexpected events)
from noise (statistically unavoidable regularities). In fact, according to [DPT03], random biological
sequences are for instance widely used for the detection of over-represented and under-represented motifs,
as well as for determining whether scores of pairwise alignments are relevant or not: although there exist
analytic approaches for these kinds of problems, for the most complex cases, it is often still necessary
to be able to alternatively use a corresponding experimental approach (based on randomly generated

∗Corresponding author.
†The research of the author has been supported by Carl-Zeiss-Stiftung.

1

sequences obtained from a computer programm). For this purpose, random sequences must obviously
obey to a certain model that takes into account some relevant properties of actual real-life sequences,
where such models are usually based on statistical parameters only. However, it is known that these
classical models can be enriched by adding structural parameters (see [DPT03]).
Over the past years, several methods have been proposed for the random generation of more complex
structures, where special attention has been paid to RNA secondary structures. RNA is a single-stranded
nucleotide polymer and a major component of cellular processes (like DNA and proteins). An RNA
strand is formed by linking together certain nucleotide units. The specific sequence of nucleotides along
this chain is called the primary structure of the molecule. By pairing of nucleotides that are not linked in
this chain (i.e. by the so-called effects of base pairing), the linear primary structure is folded into a three-
dimensional conformation, called the tertiary structure, which in many cases determines the function of
the molecule.
Most of the 3D structure is determined by the intramolecular base-pairing interactions in the plane,
which together form the secondary structure of the molecule. For this reason, pseudoknots (induced by
crossing base pairs) are considered as tertiary interactions and are usually not permitted in the definition
of secondary structure. As unknotted structures contain only nested base pairs and are thus essentially
two-dimensional, they can be modeled as planar graphs. This rather descriptive and commonly used
planar graph model for RNA secondary structures was first formalized in [Wat78]. An example is shown
in Figure 1.

Figure 1: An RNA secondary structure. Unpaired and paired bases are represented by white and gray
points, respectively.

Most of the existing random generation algorithms for RNA secondary structures are used for predicting
the structure of a given RNA sequence (see e.g. [DL03, Pon08]), while others can be employed for instance
for evaluating structure comparison softwares [AdCC+08]. Note that secondary structure prediction
methods based on random sampling represent a non-deterministic counterpart to the up-to-date most suc-
cessful and popular physics-based prediction methods that make use of the energy minimization paradigm
and are realized by dynamic programming algorithms (see e.g. [WFHS99, Zuk89, Zuk03, Hof03]). Ran-
dom sampling also differs from the stochastical RNA structure prediction approach that is based on
context-free modeling of structural motifs and adding some statistical parameters observed in real-life
data by assigning probabilities to the corresponding motifs (see e.g. [DE04, KH99, KH03]).
Nevertheless, it should be mentioned that statistical sampling methods like [DL03, Pon08] used for RNA
structure prediction are based on thermodynamics and thus inevitably inherit the problems and impre-
cisions related to energy minimizing methods, which are caused by the still incomplete commonly used
free energy models for RNAs. In order to overcome these pitfalls, one could take the competing point
of view and consider only typical structural information observed in a set of sample data as the basis
for a new random generation method. If that information draws a realistic picture for all the different
motifs of a molecule’s folding, the corresponding sampling method is likely to produce realistic results.
For these reasons, in the present paper, we rely on the approach of [WN10b] to develop a new algorithm
for the (non-uniform) random generation of RNA secondary structures (without pseudoknots) according
to a distribution induced by a set of sample RNA data1.

1Note that the algorithm actually generates secondary structures for a preliminary fixed size, not for a given RNA

2

The main contribution of this manuscript is the application and generalization of the approach from
[WN10b] to RNA secondary structures according to an elaborate and thus very realistic model. Partic-
ularly, our random generation method is based on a sophisticated context-free grammar for unknotted
structures which, in order to model the class of all considered RNA secondary structures as realistic as
possible, distinguishes between all known structural motifs that may occur in unknotted RNA secondary
structure. This means that any structural feature is modeled by one or more specific grammar rules with
corresponding probabilities observed from real-life data. Note that this grammar is actually a special
variant of the comprehensive grammar used in [NS10] for deriving a realistic RNA structure model and for
performing the first ever analytical analysis of the expected free energy of a random secondary structure
(of a specified RNA type). Actually, that grammar has been designed as a mirror of the famous Turner
energy model [XSB+98, MSZT99] which serves as the foundation for most of the existing physics-based
RNA structure prediction methods: all structural motifs for which there are different thermodynamic
rules and parameters are created by distinct production rules (with corresponding probabilities).
According to [WN10b], our sampling method involves a weighted unranking algorithm for obtaining the
final structures. Briefly, considering an arbitrary structure class of size (cardinality) c, a corresponding
unranking method uses a well-defined ordering of all class elements (according to a particular numbering
scheme, the so-called ranking method) and for a given input number r ∈ {1, . . . , c} outputs the structure
with rank r in the considered ordering. Notably, a complete structure of size n is generated by recursively
unranking the distinct structural components from the corresponding subclasses (of substructures with
sizes less than n). In our case, the weighted unranking algorithm requires a precomputation step in worst-
case time O(n2) for computing all weighted class sizes up to input size n. The worst-case complexity for
generating a secondary structure of size n at random is then given by O(n log n) since we are ranking
structures according to the boustrophedon order (see e.g. [Pon08]).
By the end of this paper, we analyze the quality of randomly generated structures by considering some
experimental results. First, we will consider statistical indicators of many important parameters related
to particular strutural motifs and compare the ones observed in the used sample set of real world RNA
data to those observed in a corresponding set of random structures. Their comparison measures indicate
that our method actually generates realistic RNA structures. Obviously, an algorithm which, for a given
structure size n, produces random RNA secondary structures that are – related to expected shapes of such
structures – in most cases realistic is a major improvement over existing approaches which, for example,
are only capable of generating secondary structures uniformly for size n. Furthermore, we will consider
the two different free energy models defined in [NS10] for RNA secondary structure (with unknown RNA
sequence) to get further evidence of the good quality of our random generation method (with respect to
free energies and thus rather likely also with respect to appearance of the different structural motifs of
RNA).

2 Prior Results and Basic Definitions

2.1 Uniform Random Generation

In the past, the problem of uniform random generation of combinatorial structures, that is the problem
of randomly generating objects (of a preliminary fixed input size) of a specified class that have the same
or similar properties, has been extensively studied. Special attention has been paid on the wide class of
decomposable structures which are basically defined as combinatorial structures that can be constructed
recursively in an unambiguous way.
In principle, two general (systematic) approaches have been developed for the uniform generation of these
structures: First, the recursive method originated in [NW78] (to generate various data structures) and
later systematized and extended in [FZV94] (to decomposable data structures), where general combina-
torial decompositions are used to generate objects at random based on counting possibilities. Second
and more recently, the so-called Boltzmann method [DFLS04, FFP07], where random objects (under the
corresponding Boltzmann model) have a fluctuating size, but objects with the same size invariably occur
with the same probability.
Note that according to [DFLS04], Boltzmann samplers may be employed for approximate-size (objects
with a randomly varying size are drawn) as well as fixed-size (objects of a strictly fixed size are drawn)
random generation and are an alternative to standard combinatorial generators based on the recursive

sequence of this size, which means we take the combinatorial point of view and completely abstract from sequence.

3

method. However, fixed-size generation is considered the standard paradigm for the random generation
of combinatorial structures.

2.2 (Admissible) Constructions and Specifications

According to [FZV94], a decomposable structure is a structure that admits an equivalent combinatorial
specification:

Definition 2.1 ([FZV94]). Let A = (A1, . . .Ar) be an r-tuple of classes of combinatorial structures.
A specification for A is a collection or r equations with the ith equation being of the form Ai =
φi(A1, . . . ,Ar), where φi denotes a term built of theAj using the constructions of disjoint union, cartesian
product, sequence, set and cycle, as well as the initial (neutral and atomic) classes.

The needed formalities that will also be used in the sequel are given as follows:

Definition 2.2 ([FS09]). If A is a combinatorial class, then An denotes the class of objects in A that
have size (defined as number of atoms) n. Furthermore:

• Objects of size 0 are called neutral objects or tags and a class consisting of a single neutral object
ε is called a neutral class, which will be denoted by E (E1, E2, . . . to distinguish multiple neutral
classes containing the objects ε1, ε2, . . ., respectively).

• Objects of size 1 are called atomic objects or atoms and a class consisting of a single atomic object is
called an atomic class, which will be denoted by Z (Za,Zb, . . . to distinguish the classes containing
the atoms a, b, . . ., respectively).

• If A1, . . . ,Ak are combinatorial classes and ε1, . . . , εk are neutral objects, the combinatorial sum
or disjoint union is defined as A1 + . . . + Ak := (E1 × A1) ∪ . . . ∪ (Ek × Ak), where ∪ denotes set
theoretic union.

• If A and B are combinatorial classes, the cartesian product is defined as A × B := {(α, β) | α ∈
A and β ∈ B}, where size(α, β) = size(α) + size(β).

Note that the constructions of disjoint union, cartesian product, sequence, set and cycle are all admissible:

Definition 2.3 ([FS09]). Let φ be an m-ary construction that associates to a any collection of classes
B1, . . . ,Bm a new class A := φ[B1, . . . ,Bm]. The construction φ is admissible iff the counting sequence
(an) of A only depends on the counting sequences (b1,n), . . . , (bm,n) of B1, . . . ,Bm, where the counting
sequence of a combinatorial class A is the sequence of integers (an)n≥0 for an = card(An).

The framework of (admissible) specifications obviously resembles that of context-free grammars (CFGs)
known from formal language theory2. In order to translate a CFG into the framework of admissible
constructions, it is sufficient to make each terminal symbol an atom and to assume each non-terminal
A to represent a class A (the set of all words which can be derived from non-terminal A). However, for
representing CFGs, only the admissible constructions disjoint union, cartesian product and sequence are
needed: Words are constructed as cartesian products of atoms, sentential forms as cartesian products of
atoms and the classes assigned to the corresponding non-terminal symbols. For instance, a production
rule A→ aB translates into the symbolic equation A = a×B. Different production rules with the same
left-hand side give rise to the union of the corresponding cartesian products.
Nevertheless, it should be noted that [FZV94] also shows how to reduce specifications to standard form,
where the corresponding standard specifications constitute the basis of the recursive method for uniform
random generation and extends the usual Chomsky normal form (CNF) for CFGs. Briefly, in standard
specifications, all sums and products are binary and the constructions of sequences, sets and cyles are
actually replaced with other constructions (for details see [FZV94]).
The prime advantage of standard specifications is that they translate directly into procedures for com-
puting the sizes of all combinatorial subclasses of the considered class C of combinatorial objects. This
means they can be used to count the number of structures of a given size that are generated from a
given non-terminal symbol. Moreoever, standard specifications immediately translate into procedures
for generating one such structure uniformly at random. The corresponding procedures (for class size
calculations and structure generations) are actually required for (uniform) random generation of words
of a given CFG by means of unranking.

2Note that we assume the reader has basic knowledge of the notions concerning context-free languages and grammars.
An introduction can be found for instance in [Har78].

4

Simply speaking, the unranking of decomposable structures (like for instance RNA secondary structures
which can be uniquely decomposed into distinct structural components) works as follows: Each structure
s in the combinatorial class Sn of all feasible structures having size n is given a number (rank) i ∈
{0, . . . , card(Sn)− 1}, defined by a particular ranking method. Based on this ordering of the considered
structure class Sn, the corresponding unranking algorithm for a given input number i ∈ {0, . . . , card(Sn)−
1} computes the single structure s ∈ Sn having number i in the ranking scheme defined for class Sn.
Note that in this context of unranking particular elements from a considered structure class, the cor-
responding algorithms make heavy use of their decomposability, as the distinct structural components
are unranked from the corresponding subclasses. In fact, the class sizes can be derived according to the
following recursion:

size(C, n) :=

1 C is neutral and n = 0,

0 C is neutral and n 6= 0,

1 C is atomic and n = 1,

0 C is atomic and n 6= 1,∑k
i=1 size(Ai, n) C = A1 + . . .+Ak,∑n
j=0 size(A, j) · size(B, n− j) C = A× B.

Note that when computing the sums for cartesian products, we can either consider the values for j
in the sequential (also called lexicographic) order (1, 2, 3, . . . , n) or in the so-called boustrophedon order
(1, n, 2, n − 1, . . . , dn2 e). In either case, given a fix number of considered combinatorial (sub)classes (or
corresponding non-terminal symbols), the precomputation of all class size tables up to size n requires
O(n2) operations on coefficients. One random generation step then needs O(n2) arithmetic operations
when using the sequential method and O(n · log(n)) operations when using the boustrophedon method (for
details we refer to [FZV94]).
Obviously, using uniform unranking procedures to construct the ith structure of size n for a randomly
drawn number i, any structure of size n is equiprobably generated. Consequently, in order to make
sure that, for given size n and a sample set of random numbers i, the corresponding structures are in
accordance with an appropriate probability distribution (as for instance observed from real-life RNA
data), it is mandatory to use a corresponding non-uniform unranking method or an alternative non-
uniform random generation approach.

2.3 Non-Uniform Random Generation

Coming back to the random testing problem from software engineering, we observe that generating objects
of a given class of input data according to a uniform distribution is sufficient for testing the correctness
of particular algorithms. However, if one intends to gather information about the “real-life behaviour”
of the algorithm (e.g. with respect to runtime or space requirements), we need to perform simulations
with input data that are as closely as possible related to corresponding application. This means to obtain
suitable test data, we need to specify a distribution on the considered class that is similar to the one
observed in real life and draw objects at random according to this (non-uniform) distribution. Deriving
such a “realistic” distribution on a given class of objects can easily be done by modeling the class by an
appropriate stochastic context-free grammar (SCFG). Details will follow in Section 2.4.
As regards RNA, it has been proven that both the combinatorial model (that is based on a uniform
distribution such that all structures of a given size are equiprobable and that completely abstracts from
the primary structure, see e.g. [SW78, VC85, Neb02a]) and the Bernoulli-model (which is capable of
incorporating information on the possible RNA sequences for a given secondary structure, see e.g. [HSS98,
Neb04b, ZS84]) for RNA secondary structures are rather unrealistic. However, modeling these structures
by an appropriate SCFG yields a more realistic RNA model, where the probability distribution on all
structures is determined from a database of real world RNA data (see e.g. [Neb02b, Neb04a]).
Based on this observation, the problem of non-uniform random generation of combinatorial structures
has been recently addressed in [WN10b]. There, it is described how to get algorithms for the random
generation of objects of a previously fixed size according to an arbitrary (non-uniform) distribution
implied by a given SCFG. In principle, the construction scheme introduced in [WN10b] extends on
the recursive method for the (uniform) random generation [FZV94] and adapted it to the problem of
unranking of [Mol05]: the basic principle is that any (complex) combinatorial class can be decomposed
into (or can be constructed from) simpler classes by using admissible constructions.
Essentially, in [WN10b], a new admissible construction called weighting has been introduced in order to

5

make non-uniform random generation possible. By weighting, we understand the generation of distin-
guishable copies of objects. Formally:

Definition 2.4. If A is a combinatorial class and λ is an integer, the weighting of A by λ is defined as
λA := A+ . . .+A︸ ︷︷ ︸

λ times

. We will call two objects from a combinatorial class copies of the same object iff they

only differ in the tags added by weighting operations.

For example, if we weight the class A = {a} by two, we assume the result to be the set {a, a}; weighting
B = {b} by three generates {b, b, b}. Thus, 2A + 3B = {a, a, b, b, b} and within this class, a has relative
frequency 2

5 , while b has relative frequency 3
5 . Hence, this way it becomes possible to regard non-uniformly

distributed classes.
As weighting a class can be replaced by a disjoint union, size(λA, n) = λ ·size(A, n) and the complexity
results from [Mol05] also hold for weighted classes. Hence, the corresponding class size computations up
to n need O(n2) time.

2.4 Stochastic Context-Free Grammars

As already mentioned, stochastic context-free grammars (SCFGs) are a powerful tool for modeling com-
binatorial classes and the essence of the non-uniform random sampling approach that will be worked out
in this article. Therefore, we will now give the needed background information.

2.4.1 Basic Concepts

Briefly, SCFGs are an extension of traditional CFGs: usual CFGs are only capable of modeling the class
of all generated structures and thus inevitably induce a uniform distribution on the objects, while SCFGs
additionally produce a (non-uniform) probability distribution on the considered class of objects. In fact,
an SCFG is derived by equipping the productions of a corresponding CFG with probabilities such that
the induced distribution on the generated language models as closely as possible the distribution of the
sample data. The needed formalities are given as follows:

Definition 2.5 ([FH72]). A weighted context-free grammar (WCFG) is a 5-tuple G = (I, T,R, S,W),
where I (resp. T) is an alphabet (finite set) of intermediate (resp. terminal) symbols (I and T are disjoint),
S ∈ I is a distinguished intermediate symbol called axiom, R ⊂ I × (I ∪ T)∗ is a finite set of production
rules and W : R→ R+ is a mapping such that each rule f ∈ R is equipped with a weight wf := W (f). If
G is a WCFG, then G is a stochastic context-free grammar (SCFG) iff the following additional restrictions
hold:

1. For all f ∈ R, we have W (f) ∈ (0, 1], which means the weights are probabilities.

2. The probabilities are chosen in such a way that for all A ∈ I, we have
∑
f∈R,Q(f)=A wf = 1, where

Q(f) denotes the premise of the production f , i.e. the first component A of a production rule
(A,α) ∈ R. In the sequel, we will write wf : A→ α instead of f = (A,α) ∈ R, wf = w(f).

However, at this point, we decided to not recall the basic concepts regarding SCFGs, as they are not really
necessary for the understanding of this article. The interested reader is referred to the corresponding
section in [NS10]. For a more fundamental introduction on stochastic context-free languages, see for
example [HF71]. In fact, the only information needed in the sequel is that if structures are modeled
by a consistent SCFG, then the probability distribution on the production rules of the SCFG implies a
probability distribution on the words of the generated language and thus on the modeled structures. To
ensure that a SCFG gets consistent, one can for example assign relative frequencies to the productions,
which are computed by counting the production rules used in the leftmost derivations of a finite sample
of words from the generated language. For unambiguous SCFGs, the relative frequencies can actually be
counted efficiently, as for every word, there is only one leftmost derivation to consider.

2.4.2 Modeling RNA Secondary Structure via SCFGs

Besides the popular planar graph representation of unknotted secondary structures, many other ways
of formalizing RNA folding have been described in literature. One well-established example is the so
called bar-bracket representation, where a secondary structure is modeled as a string over the alphabet
Σ := {(((,))), |||}, with a bar ||| and a pair of corresponding brackets ((())) representing an unpaired nucleotide and
two paired bases in the molecule, respectively (see, e.g. [VC85]). Obviously, both models abstract from

6

primary structure, as they only consider the number of base pairs and unpaired bases and their positions.
Moreoever, there exists a one-to-one correspondence between both representations, as illustrated by the
following example:

Example 2.1. The secondary structure shown in Figure 1 has the following equivalent bar-bracket
representation that can be decomposed into subwords corresponding to the basic structural motifs that
are distinguished in state-of-the-art thermodynamic models:

exterior loop︷ ︸︸ ︷
|||||||||||| ((((((((((((||||||||| hel1 ||||||||| hel2 |||||| hel3 |||︸ ︷︷ ︸

multiloop (of degree 3)

)))))))))))) ||||||, where

hel1 = ((((((((((((

bulge left︷ ︸︸ ︷
|||||||||||| (((((((((||||||||||||||||||︸︷︷︸

hairpin

))))))))))))))))))))), hel3 = ((((((

2×2 interior loop︷ ︸︸ ︷
|||||| (((|||||| ((((((((((((|||||||||)))))))))))) |||||||||||||||||||||︸ ︷︷ ︸

2×7 interior loop

))) ||||||)))))),

and hel2 = (((((((((

multiloop (of degree 2)︷ ︸︸ ︷
|||||| ((((((((((((||| hel2,1 |||||||||||||||||||||︸ ︷︷ ︸

1×7 interior loop

)))))))))))) ||||||||||||||| hel2,2))))))))), with

hel2,1 = ((((((

single bulge left︷ ︸︸ ︷
||| (((||||||||||||︸︷︷︸

hairpin

))))))))) and hel2,2 = (((

1×1 interior loop︷ ︸︸ ︷
||| ((((((|||||||||||||||︸︷︷︸

hairpin

)))))) |||))).

Note that the reading order of secondary structures is from left to right, which is due to the chemical
structure of the molecule.

Consequently, secondary structures without pseudoknots can be encoded as words of a context-free lan-
guage and the class of all feasible structures can thus effectively be modeled via a corresponding CFG.
Basically, that CFG can be constructed to describe a number of classical constraints (e.g. the presence
of particular motifs in structures) and it can also express long-range interactions (e.g. base pairings). By
extending it to a corresponding SCFG, we can also model the fact that specific motifs of RNA secondary
structures are more likely to be folded at certain stages than others (and not all possible motifs are
equiprobable at any folding stage).
In fact, it is known for a long time that SCFGs can be used to model RNA secondary structures (see
e.g. [SBH+94]). Additionally, SCFGs have already been used successfully for the prediction of RNA
secondary structure [KH99, KH03]. Moreoever, they can be employed for identifying structural motifs
as well as for deriving stochastic RNA models that are – with respect to the expected shapes – more
realistic than other models [Neb04a]. Furthermore, note that an SCFG mirror of the famous Turner
energy model has been used in [NS10] to perform the first analytical analysis of the free energy of RNA
secondary structures; this SCFG marks a cornerstone between stochastic and pyhsics-based approaches
towards RNA structure prediction.

2.4.3 Random Generation With SCFGs

SCFGs can easily be used for the random generation of combinatorial objects according to the probability
distribution induced by a sample set, where the only problem is that they do not allow the user to fix
the length of generated structures. In particular, given an SCFG G and the corresponding language
(combinatorial class) L(G), a random word w ∈ L(G) can be generated in the following way:

• Start with the sentential form S (where S denotes the axiom of the grammar G).

• While there are non-terminal symbols (in the currently considered sentential form), do the following:

1) Let A denote the leftmost non-terminal symbol.

2) Draw a random number r from the interval (0, 1].

3) Substitute symbol A by the right-hand side α of the production A → α determined by the
random number r.
This means consider all m ≥ 1 rules p1 : A → α1, . . . , pm : A → αm having left-hand side A,
where according to the definition of SCFGs,

∑m
i=1 pi = 1 must hold. Then, find k ≥ 1 with∑k−1

i=1 pi < r ≤
∑k
i=1 pi, i.e. determine k ≥ 1 with r ∈

(∑k−1
i=1 pi,

∑k
i=1 pi

]
. The production

corresponding to the randomly drawn number r ∈ (0, 1] is then given by A → αk and hence,
in the currently considered sentential form, the non-terminal symbol A is substituted by αk.

7

• If there are no more non-terminal symbols, then the currently considered sentential form is equal
to a word w ∈ L(G); w has been randomly generated.

Note that the choice of the production made in 3) according to the previously drawn random number is
appropriate, since it is conform to the probability distribution on the grammar rules.

Example 2.2. Consider the language generated by the SCFG with productions 3/4 : S → ε and 1/4 :
S → (((S))). Thus, we start with the sentential form S, then consider the leftmost non-terminal symbol,
which is given by S, and draw a random number r ∈ (0, 1]. If 0 < r ≤ 3/4, the production determined by
r is S → ε and thus, we get the empty word and are finished. Otherwise, 3/4 < r ≤ 3/4 + 1/4 = 1, which
means we have to consider A → (((S))) for the substitution in step 3) and thus obtain the sentential form
(((S))). Afterwards, we must repeat the process, as there is still one non-terminal symbol left.

Unfortunately, there is one major problem that comes with this approach for the (non-uniform) random
generation of combinatorial objects: The underlying (consistent) SCFG G implies a probability distribu-
tion on the whole language L(G), such that we generate a word of arbitrary size. In order to fix the size,
we can proceed along the following lines:

1) We translate the grammar G into a new framework which allows to consider fixed sizes for the
random generation, such that

2) the distribution implied on L(G) conditioned on any fixed size n is kept within the new framework.

A well-known approach which allows for 1) is connected to the concept of admissible constructions used
to describe a decomposable combinatorial class (see above). As the operations (like cartestian products,
unions, and so on) used to construct the combinatorial objects are also used to define an order on them, it
becomes possible to identify the ith object of a given size and the problem of generating objects uniformly
at random reduces to the problem of unranking, that is the problem of constructing the object of order
(rank) i, for i a random number (see e.g. [Lie98]).

Remark. Some might think that with an appropriate SCFG (modeling a given class of objects) at hand,
it is not really neccessary to use an unranking method that implies cumbersome formalities such as
admissible constructions and decomposable classes if we want to generate random objects of a fixed size
n. As a matter of principle, they are right – we could also use a conditional sampling method: If we need
to generate a word of size n from non-terminal symbol A, where there are m ≥ 1 rules fi = A → αi,
1 ≤ i ≤ m, having left-hand side A, then we just need to choose the next production fi according to

Prob(A→ αi ⇒∗ x | size(x) = n)

Prob(A⇒∗ x | size(x) = n)
,

which is the posterior probability that we used production rule fi under the condition that a word of size
n is generated.
Similarly, if the production rule is of the type A → BC (assuming the grammar is in Chomsky normal
form (CNF), which does not pose a problem, as an unambiguous SCFG can be efficiently transformed
into CNF [HF71]), we can choose a way to split size n into sizes j and n − j for the lengths generated
from non-terminal symbols B and C. This requires precomputing n length-dependent probabilities (i.e. all
probabilities for generating a word of any length up to n) for each non-terminal symbol, which might
seem to be similar (with respect to complexity) to precomputing all class sizes up to n for all considered
combintatorial (sub)classes as needs to be done for unranking.
However, there is one striking difference: length-dependent probabilities (which by the way yield a so-
called length-dependent SCFG (LSCFG), see [WN10a]), require a very rich training set. In fact, if the
RNA data set used for determining the distribution induced by the grammar is not rich enough, then
the corresponding stochastic RNA model is underestimated and its quality decreases. This is especially a
problem when considering comprehensive CFGs that distinguish between many different structural motifs
in order to get a realistic picture of the molecules’ behaviour; such a grammar should however be preferred
over simple lightweight grammars as basis for a non-uniform random generation method. Nevertheless,
this problem does not surface when sticking to conventional probabilities and the corresponding traditional
SCFG model. Actually, since we consider a huge CFG where all possible structural motifs are created by
distinct productions, we generally obtain realistic probability distributions and RNA models (see [NS10]).
Bottom line is that hooking up to unranking of combintatorial classes offers a significant benefit compared
to conditional sampling, namely a greater independence of the richness of the training data. For this
reason, we decided to consider the unranking approach instead of conditional sampling, even though it
requires a more cumbersome framework.

8

2.5 Unranking of Combinatorial Objects

The problem of unranking can easily be solved along the composition of the objects at hand, i.e. the
operations used for its construction, once we know the number of possible choices for each substructure.
Assume for example we want to unrank objects from a class C = A + B. We will assume all elements
of A to be of smaller order than those of B (this way we use the construction of the class to imply
an ordering). Finding the ith element of C, i.e. unranking class C, now becomes possible by deciding
whether i < card(A). In this case, we recursively call the unranking procedure for A. Otherwise (i.e. if
i ≥ card(A)), we consider B, searching for its (i− card(A))th element.
Formally, we first need to specify an order on all objects of the considered combinatorial class that have
the same size. This can be done in a recursive way according to the admissible specification of the class:

Definition 2.6 ([Mol05]). Neutral and atomic classes contain only one element, such that there is only
one possible ordering. Furthermore, let <Cn denote the ordering within the combinatorial class Cn, then

• If C = A1 + . . .+Ak and γ, γ′ ∈ Cn, then γ <Cn γ
′ iff

[γ ∈ (Ai)n and γ′ ∈ (Aj)n and i < j] or [γ, γ′ ∈ (Ai)n and γ <(Ai)n γ
′].

• If C = A× B and γ = (α, β), γ′ = (α′, β′) ∈ Cn, then γ <Cn γ
′ iff

[size(α) < size(α′)] or [j = size(α) = size(α′) and α <(A)j α
′] or [α = α′ and β <(B)n−j β′]

when considering the lexicographic order (1, 2, 3, . . . , n), which is induced by the specification Cn =
A0 × Bn +A1 × Bn−1 +A2 × Bn−2 + . . .+An × B0.

• If C = A× B and γ = (α, β), γ′ = (α′, β′) ∈ Cn, then γ <Cn γ
′ iff

[min(size(α), size(β)) < min(size(α′), size(β′))] or

[min(size(α), size(β)) = min(size(α′), size(β′)) and size(α) < size(α′)] or

[j = size(α) = size(α′) and α <(A)j α
′] or [α = α′ and β <(B)n−j β′]

when considering the boustrophedon order (1, n, 2, n − 1, . . . , dn2 e), induced by the specification
Cn = A0 × Bn +An × B0 +A1 × Bn−1 +An−1 × B1 + . . .

Considering <Cn , the actual unranking algorithms are quite straightforward. Therefore, they will not be
presented here and we refer to [MM01, WN10b] for details.
Recall that in [WN10b], the basic approach towards non-uniform random generation is weighting of
combinatorial classes, as this makes it possible that the classes are non-uniformly distributed. If those
combinatorial classes are to correspond to a considered SCFG, we have to face the problem that the
maximum likelihood (ML) training introduces rational weights for the production rules while weighting
as an admissible construction needs integer arguments.
When translating rational probabilities into integral weights, we have to assure that the relative weight of
each (unambiguously) generated word remains unchanged. This can be reached by scaling all productions
by the same factor (common denominator of all probabilities), while ensuring that derivations are of equal
length for words of the same size (ensured by using grammars in CNF). However, a much more elegant
way is to scale each production according to its contribution to the length of the word generated, that
is, productions lengthening the word by k will be scaled by ck. Since we consider CFGs, the lengthening
of a production of the form A → α is given by |α| − 1. However, this rule leads to productions with a
conclusion of length 1 not being reweighted, hence we have to assure that all those productions already
have integral weights. Furthermore, ε-productions need a special treatment. We don’t want to discuss
full details here and conclude by noticing that the reweighting normal form (RNF) keeps track of all
possible issues:

Definition 2.7 ([WN10b]). If G = (I, T,R, S,W) is a WCFG, G is said to be in reweighting normal form
(RNF) iff

1. G is loop-free and ε-free.

2. For all A→ α ∈ R with A = S, we have |α| ≤ 1.

3. For all A→ α ∈ R with A 6= S, we have |α| > 1 or W (A→ α) ∈ N.

4. For all A ∈ I there exists α ∈ (I ∪ T)∗ such that A→ α ∈ R.

9

Note that the last condition (that any intermediate symbol occurs as premise of at least one produc-
tion) is not required for reweighting, but necessary for the translation of a grammar into an admissible
specification.

Definition 2.8 ([WN10b]). A WCFG G is called loop-free iff there exists no nonempty derivation A⇒+ A
for A ∈ I. It is called ε-free iff there exists no (A, ε) ∈ R with A = S and there exists no (A,α1Sα2) ∈ R,
where ε denotes the empty word.
If G and G′ are WCFGs, then G and G′ are said to be word-equivalent iff L(G) = L(G′) and for each word
w ∈ L(G), we have W (w) = W ′(w).

In [WN10b], it is shown how to transform an arbitrary WCFG to a word-equivalent, loop-free and ε-free
grammar, that grammar to one in RNF and the latter to the corresponding admissible specification.
Formally:

Theorem 2.1 ([HF71]). If G is a SCFG, there exists a SCFG G′ in Chomsky normal form (CNF) that
is word-equivalent to G, and G′ can be effectively constructed from G.

The construction given in [HF71] assumes that G is ε-free. It can however be extended to non-ε-free gram-
mars by adding an additional step after the intermediate grammar G has been created (see e.g. [WN10b]).
Furthermore, it should be noted that an unambiguous grammar is inevitably loop-free.

Theorem 2.2 ([WN10b]). If G is a loop-free, ε-free WCFG, there exists a WCFG G′ in RNF that is
word-equivalent to G and G′ can be effectively constructed from G.

Altogether, starting with an arbitrary unambiguous SCFG G0 that models the class of objects to be
randomly generated, we have to proceed along the following lines:

• Transform G0 to a corresponding ε-free and loop-free SCFG G1.

• Transform G1 into G2 in RNF (where all production weights are rational).

• Reweight the production rules of G2 (such that all production weights are integral), yielding
reweighted WCFG G3.

• Transform G3 (with integral weights) into the corresponding admissible specification.

• This specification (with weighted classes) can be translated directly

– into a recursion for the function size of all involved combinatorial (sub)classes (where class
sizes are weighted) and

– into generating algorithms for the specified (weighted) classes,

yielding the desired weighted unranking algorithm for generating random elements of L(G0).

A small example that shows how to proceed from SCFG to reweighted normal form and the corresponding
weighted combinatorial classes which allow for non-uniform generation by means of unranking is discussed
in Appendix A.

3 Generating Random RNA Secondary Structures

We will now consider the previously discussed approach to construct a weighted unranking algorithm
that generates random RNA secondary structures of a given size according to a realistic probability
distribution.
As for this paper, the corresponding probability distribution will be induced by a set of sample (SSU and
LSU r)RNA secondary structures from the databases [WRdP+01, WdPWW02], which will be referred
to as biological database in the sequel. However, the presented algorithm can easily be used for any other
distribution, which can be defined by a database of known RNA structures of a particular RNA type;
our webservice implementation accessible at http://wwwagak.cs.uni-kl.de/NonUniRandGen is actually
able to sample random secondary structures of any specified RNA type.

10

3.1 Considered Combinatorial Class

According to the common definition of RNA secondary structure, we decided to consider the combinatorial
class of all RNA secondary structures without pseudoknots that meet the stereochemical constraint of
hairpin loops consisting of at least 3 unpaired nucleotides, formally:

Definition 3.1 ([NS10]). The language L containing exactly all RNA secondary structures3 is given by
L := LuL+

lu , where Llu := (((Ll)))Lu, Lu := {|||}∗ is the language of all bar-bracket representations of single-
stranded regions and Ll is the language of all bar-bracket representations of other possible substructures,
i.e. is the smallest language satisfying the following conditions:

1. {|||}+ \ {|||, ||||||} ⊂ Ll (bar-bracket representations of hairpin loops).

2. If w ∈ Ll, then (((w))) ∈ Ll (bar-bracket representation of a stacked pair).

3. If w ∈ Ll, then {|||}+(((w))) ⊂ Ll and (((w))){|||}+ ⊂ Ll (bar-bracket representations of bulge loops).

4. If w ∈ Ll, then {|||}+(((w))){|||}+ ⊂ Ll (bar-bracket representations of interior loops).

5. If w1, . . . , wn ∈ Ll and n ≥ 2, then Lu(((w1)))Lu(((w2))) · · · Lu(((wn)))Lu ⊂ Ll (bar-bracket representations
of multibranched loops).

The desired weighted unranking algoritm thus generates, for a given size n and a given number i ∈
{0, . . . , card(Ln)− 1}, the ith secondary structure s ∈ Ln, where card(Ln) = size(L, n) is the number of
elements in the weighted class Ln.

3.2 Considered SCFG Model

First, we have to find a suitable SCFG that generates L and models the distribution of the sample data
as closely as possible. To reach this goal, it is important to appropriately specify the set of production
rules in order to guarantee that all substructures that have to be distinguished are generated by different
rules. This is due to the fact that by using only one production rule f to generate different substructures
(e.g. any unpaired nucleotides independent of the type of loop they belong to), there is only one weight
(the probability pf of this production f) with which any of these substructures is generated, whereas
the use of different rules f1, . . . , fk to distinguish between these substructures implies that they may be
generated with different probabilites pf1 , . . . , pfk , where pf1 + . . . + pfk = pf . This way, we ensure that
more common substructures are generated with higher probabilities than less common ones.

Example 3.1. A (rather simple) unambiguous SCFG Gs generating the language L is given by:

w1 : Ss → CA,
w2 : A→ (((B)))C, w3 : A→ (((B)))CA,
w4 : B → |||||||||C, w5 : B → CA,
w6 : C → ε, w7 : C → |||C.

When changeing the production w5 : B → CA used to generate any possible k-loop for k ≥ 2 (any loop
that is not a hairpin loop) with probability w5 into the two rules

w5.1 : B → C(((B)))C, w5.2 : B → C(((B)))CA,

where w5.1+w5.2 = w5, it becomes possible to generate any possible 2-loop (i.e. a stacked pair, a bulge (on
the left or on the right), or an interior loop) and all kinds of multiloops (i.e. any k-loop with k ≥ 3) with
different probabilities, which could increase the accuracy of the SCFG model. By additionally replacing
the first of these two new rules, w5.1 : B → C(((B)))C, by the four productions

w5.1.1 : B → (((B))), w5.1.2 : B → |||C(((B))), w5.1.3 : B → (((B)))C|||, w5.1.4 : B → |||C(((B)))C|||,

where (w5.1.1 + . . . + w5.1.4) + w5.2 = w5.1 + w5.2 = w5, we can distinguish between the different types
of 2-loops more accurately, yielding a more realistic secondary structure model. In fact, in the case
of significant differences of the new probabilities (w5.1.1, . . . , w5.1.4 and w5.2), we can expect a huge
improvement in the model’s accuracy.

3Note that according to this definition, completely unpaired structures are prohibited.

11

According to the previously mentioned facts (and the corresponding illustrations by Example 3.1), we
decided that the basis for our weighted unranking algorithm should be the following ε-free, loop-free and
unambiguous SCFG4, which has been derived from the sophisticated SCFG presented in [NS10] that
distinguishes between all known structural motifs that can be found in RNA secondary structure:

Definition 3.2. The unambiguous ε-free SCFG Ĝsto generating exactly the language L is given by
Ĝsto = (IĜsto ,ΣĜsto , RĜsto , S

′), where

IĜsto = {S′, E, S, T, C,A, L,G,D,B, F,H, P,Q,R, V,W,O, J,K,M,X, Y, Z,N,U},

ΣĜsto = {(((,))), |||} and RĜsto contains exactly the following rules:

p̂1 : S′ → E,
p̂2 : E → S, p̂3 : E → SC,
p̂4 : S → A, p̂5 : S → TA,
p̂6 : T → E, p̂7 : T → C,

 shape of exterior loop

p̂8 : C → |||, p̂9 : C → C|||, strands in exterior loop

p̂10 : A→ (((L))), initiate helix

p̂11 : L→ A, p̂12 : L→M, initiate stacked pair or multiple loop
p̂13 : L→ P, p̂14 : L→ Q, p̂15 : L→ R, initiate interior loop
p̂16 : L→ F, p̂17 : L→ G, initiate hairpin loop or bulge loop

p̂18 : G→ A|||, p̂19 : G→ AD, p̂20 : G→ |||A, p̂21 : G→ DA, shape of bulge loop

p̂22 : D → B|||,
p̂23 : B → |||, p̂24 : B → B|||,

}
strands in bulge loop

p̂25 : F → |||||||||, p̂26 : F → ||||||||||||, p̂27 : F → ||||||||||||H,
p̂28 : H → |||, p̂29 : H → H|||,

}
hairpin loop

p̂30 : P → |||A|||, p̂31 : P → |||A||||||, p̂32 : P → ||||||A|||, p̂33 : P → ||||||A||||||, small interior loops

p̂34 : Q→ ||||||O||||||, p̂35 : Q→ ||||||V |||,
p̂36 : R→ |||O||||||, p̂37 : R→ ||||||W |||,
p̂38 : V → JO,
p̂39 : W → JA,
p̂40 : O → AK,

 other interior loops

p̂41 : J → |||, p̂42 : J → J|||,
p̂43 : K → |||, p̂44 : K → K|||,

}
strands in interior loop

p̂45 : M → XY,
p̂46 : X → A, p̂47 : X → UA,
p̂48 : Y → Z,
p̂49 : Z → X, p̂50 : Z → XN,
p̂51 : N → Z, p̂52 : N → U,

multiple loop

p̂53 : U → |||, p̂54 : U → U|||. strands in multiple loop

Figures 2 and 3 illustrate by examples how (parts of) secondary structures are generated by this SCFG,
where we used I

x

to denote the full parse tree for I ⇒∗ x (i.e. for consecutive applications of an

arbitrary number of production rules that generate the subword x from the intermediate symobl I) in
oder to obtain a more compact tree representation. In fact, it is easy to see that the overall structure
is always produced by starting with the axiom S′, while any particular substructure or structural motif
that belongs to the combinatorial (sub)class I is created from the corresponding intermediate symbol I.

Note that Ĝsto contains more production rules (and more different non-terminal symbols) than the SCFG
considered in [NS10], but this new grammar is ε-free and additionally, the conclusion of every single
production contains at most two non-terminal symbols, such that the resulting unranking algorithm has
to consider less cases (i.e. less “else if ()” cases). For details, see [WN10b] and Section Sm-I5.
Furthermore, it should be mentioned that we decided to assign relative frequencies to the production
rules of Ĝsto, since such probabilities can be computed efficiently for unambiguous SCFGs. Moreover,

4Note that these are exactly the preliminary required conditions for the basis SCFG according to [WN10b].
5All references starting with Sm are references to the supplementary material.

12

S′

E

S

T

C

||||||||||||

A

((((((((((((L

M

X

U

|||||||||

A

hel1

Y

Z

X

U

|||||||||

A

hel2

N

Z

X

U

||||||

A

hel3

N

U

|||

))))))))))))

C

||||||

Figure 2: Unique parse tree for the bar-bracket word considered in Example 2.1 that corresponds to the
planar secondary structure from Figure 1.

((((((((((((L

G

D

B

|||||||||

|||

A

(((((((((L

F

|||||||||||| H

||||||

)))))))))

))))))))))))

(a) Parse tree for subword hel1.

((((((L

P

|||||| A

(((L

Q

|||||| O

A

((((((((((((L

F

|||||||||

))))))))))))

K

|||||||||||||||

||||||

)))

||||||

))))))

(b) Parse tree for subword hel3.

Figure 3: Particular subtrees of the tree presented in Figure 2.

by estimating the probabilities p̂i, 1 ≤ i ≤ 54, by their relative frequencies, the resulting grammar
Ĝsto has the consistency property, which means Ĝsto provides a probability distribution on the language
L(Ĝsto) = L. In particular, we have trained the probabilities (relative frequencies) of Ĝsto from the

structures s ∈ L(Ĝsto) given in our biological database. The resulting probabilities are given in Table 1

13

of Sm-II, and their floating point approximations, rounded to the third decimal place, are given in Table 2
of Sm-II.

3.3 Derivation of the Algorithm

The elaborate SCFG Ĝsto is appropriate for being used as the basis for the desired weighed unranking
method: after having determined the RNF of this SCFG and the corresponding weighted combinatorial
classes, we easily find a recursion for the size function (in the same ways as discussed in Example A.1).
Then, we can use the resulting weighted class sizes for the straightforward construction of the desired
unranking algorithm.
In fact, for the construction of the complete algorithm, we simply have to use Algorithms 1 to 4 (Unranking
of neutral classes, atomic classes, disjoint unions and cartesian products, respectively) and Algorithm 6
(Unranking of weighted classes)6 given in [WN10b] as subroutines. However, to improve the worst-case
complexity of the resulting unranking procedure from O(n2) to O(n · log(n)) by using the boustrophedonic
order instead of the sequential order, a simple change in Algorithm 4 (Unranking of cartesian products)
is neccessary (see e.g. [Pon08]).
A random RNA secondary structure of size n can easily be computed by drawing a random number
i ∈ {0, . . . , size(L, n) − 1} and then unranking the ith structure of size n. The worst-case runtime
complexity of this procedure is equal to that of unranking and is thus given by O(n · log(n)) when
using the boustrophedonic order. By repeating this procedure m times, a set of m (not necessarily
distinct) random RNA secondary structures of size n can be generated in time O(m · n · log(n)), where
a preprocessing time of O(n2) is required for the computation of all (weighted) class sizes up to input
length n.
A complete and detailed description of the derivation of our weighted unranking algorithm for (SSU
and LSU r)RNA secondary structures can be found in Section Sm-I, since it is too comprehensive to be
presented here and the different steps for its generation correspond to those described in [WN10b].

Availability of Software

It may be of interest to the reader that this non-uniform random generation algorithm for RNA secondary
structures has been implemented as a webservice which is accessible to the scientific community under
http://wwwagak.cs.uni-kl.de/NonUniRandGen. Since it is relevant for researchers to have methods
available for generating random structures that are realisitic for a particular investigation, this webservice
is also capable of allowing the user to specify the distribution from which the corresponding structures
should be sampled (in the form of a set of secondary structure samples from which the parameters for
our grammars are inferred).

4 Discussion

The purpose of this section is to analyze the quality of randomly generated structures by considering
some experimental results.

4.1 Parameters for Structural Motifs

As a first step, we decided to consider several important parameters related to particular structural motifs
of RNA secondary structure and compare the observed statistical values derived from a native sample
(here our biological database, i.e. the set of real-life RNA data that we used for deriving the distribution
and thus the weights for the unranking algorithm) to those derived from a corresponding random sample
(i.e. a set of random structures generated by our algorithm). In order to obtain an appropriate random
sample, we have generated exactly one random structure of size n for each native RNA structure of size
n given in our database, such that for each occuring size n, the random sample and the native sample
contain the same number of structures having this size.
The determined results are presented in Table 1. Comparing the specific values of all different parameters,
we can guess that our algorithm produces random RNA secondary structures that are, related to the
different structural motifs and thus related to the expected shape of such structures, in most cases
realistic. Obviously, this is a major improvement over existing approaches for the random generation
of secondary structures of a given input size n (where the corresponding specific RNA sequence is not

6Note that the application of this algorithm for unranking of weighted classes is the only difference to similar uniform
unranking methods.

14

Expected Value Variance
Parameter

Random Native Random Native

numunp 848.179 839.956 98964.7 103426.
numbps 420.848 424.96 27785.3 31310.9
numurs 179.73 181.822 4959.96 5117.47
nume 1. 1. 0. 0.
numh 36.6983 36.4818 196.935 185.596
nums 321.18 324.26 16538.8 19343.4
numb 20.6061 20.5782 87.1894 50.3103
numi 26.1442 26.538 125.66 194.769
numm 16.2197 17.1018 57.8874 41.0261
numhel 99.6683 100.7 1549.24 1492.84
unpe 106.014 79.8382 4039.69 3897.61
unph 6.93534 6.93188 18.4264 77.464
unps — — — —
unpb 1.9948 1.99596 3.10283 6.87868
unpi 7.14617 7.08869 16.5725 31.1197
unpm 16.0122 16.2577 87.4906 195.497
unphel — — — —
bpse 9.41479 6.94105 29.1956 6.30949
bpsh — — — —
bpss 1. 1. 0. 0.
bpsb 1. 1. 0. 0.
bpsi 1. 1. 0. 0.
bpsm 2.68212 2.72734 1.12921 1.21643
bpshel 4.22249 4.22006 13.6266 5.52299

Table 1: Specific values (expectation and variation) of important parameters related to particular
strutural motifs of RNA secondary structure, derived from a native sample (our biological database)
and from a random sample, respectively. numx denotes the number of occurrences of motif x in one
secondary structure and unpx (bpsx) denotes the number of accessible unpaired bases (base pairs) in one
substructure of type x. unp,bps,urs denote unpaired bases, base pairs and unpaired regions, whereas
e, h, s, b, i,m, hel denote exterior loop, hairpin loop, stacked pair, bulge loop, interior loop, multiloop and
helix, respectively.

known, but only its length n), as those (sequence-independent) methods are only capable of generating
structures uniformly at random for input size n. Furthermore, with the SCFG model used here, we have
an new model for RNA secondary structures at hand which realistically reflects the structure of an RNA
molecule and its basic strucural motifs.

4.2 Related Free Energies

For further investigation on the accuracy of our random generator, we take on a completely different
point of view and consider thermodynamics. The reason behind this idea is that if an RNA secondary
structure model induced by a SCFG shows a realistic behaviour (expectation and variance) with respect
to minimum free energy, then it is rather likely that our grammar also shows a realistic picture for all the
different structural motifs of a molecule’s folding (as the free energy of a molecule’s structure is defined
as the sum of the energy contributions of all its substructures).
Since we do not know the corresponding RNA sequences for the randomly generated structures, we can not
use one of the common sequence-dependent thermodynamic models for RNAs. Therefore, we decided to
consider both the static and dynamic free energy models7 defined in [NS10] for RNA secondary structures
with unknown sequence. These models are based on the well-known Turner energy model [XSB+98,
MSZT99] and model parameters have been derived from the same biological database (of SSU and LSU

7In the static model, averaged free energy contributions for the distinguished structural motifs are considered which
can easily be derived from the training data (by sequence counting). These averaged values actually represent the free
energy contributions that have to be added for the respective whole substructures. For the dynamic model, corresponding
average values for length-dependent free energy contributions (that depend on the number of unpaired or paired bases
within particular substructures) are added for each component (unpaired base or base pair) in the respective motifs, such
that in contrast to the static model, substructures of different lengths are assigned different free energy values.

15

rRNAs) that we consider in this article. In fact, both models have turned out to show a realistic behaviour
and can therefore be used to judge the quality of random structures generated by our algorithm.

4.2.1 Unquantified Results

Similar to [NS10], we denote the free energy of a given secondary structure s ∈ L according to the
static and dynamic model by gstat(s) and gdyn(s), respectively. Moreover, the expected free energy and
corresponding variance that have been analytically derived in that paper for any n > 0 are denoted
by µenergy,n := E [energy(s) | size(s) = n] and σ2

energy,n := V [energy(s) | size(s) = n], respectively, where
energy ∈ {gstat, gdyn}. The corresponding confidence interval for n > 0 and k > 1, which contains at
least

(
100− 100

k2

)
percent of the energies in {energy(s) | s ∈ Ln} is denoted by Ienergy,n(k) := (µenergy,n−

kσenergy,n, µenergy,n + kσenergy,n). As these analytical energy results from [NS10] and our unranking
algorithm have been derived from the same database of real-life RNA data and by modeling the same
class L of structues via very similar SCFGs, it seems adequate to use them for comparisons with the
energies of our randomly generated structures.
Before we start with our comparisons, note that for any sample set S of secondary structures, we
can calculate the corresponding energy points EP (S, energy) := {(size(s), energy(s)) | s ∈ S}, where
energy ∈ {gstat, gdyn}. Obviously, we can also compute the corresponding “average energy points”

AvEP (S, energy) :=
{

(n, µn := 1
card(Sn)

∑
s∈Sn energy(s)) | Sn 6= ∅

}
and the corresponding “energy vari-

ance points” V arEP (S, energy) :=
{

(n, σ2
n := 1

card(Sn)

∑
s∈Sn (µn − energy(s))

2 | Sn 6= ∅
}

, respectively.

In the sequel, we will denote a random sample generated by our algorithm by R and a native sample
(biological database) by N .

Figure 4: Plots of the confidence intervals Igstat,n(k) for the static energy model (blue), for k ∈
{
√

2, 2,
√

10,
√

20} (top left to bottom right), together with the corresponding energy points EP (R, gstat)
for the random sample (cyan) and EP (N , gstat) for the native sample (green).

In order to obtain an appropriate random sample for our energy comparisons, we derived a large
set of random structures by generating 1000 RNA secondary structures for each of the sizes n ∈
{500, 1000, 1500, . . . , 5000, 5500} with our weighted unranking algorithm. To compare the energies of
our randomly generated structures to the corresponding confidence interval(s), we decided to consider
any k ∈ {

√
2, 2,
√

10,
√

20}, meaning the probability that the free energy of a random RNA secondary
structure of size n lies within the corresponding interval is greater than 0.5, 0.75, 0.9, and 0.95, respec-
tively.
Figure 4 shows a plot of the corresponding four confidence intervals (analytically derived, related to
our biological data) along with the energy points for our random sample and for our native database,
respectively, under the assumption of the static energy model. The corresponding plots for the dynamic

16

Figure 5: Plots of the confidence intervals Igdyn,n(k) for the dynamic energy model (purple), for k ∈
{
√

2, 2,
√

10,
√

20} (top left to bottom right), together with the corresponding energy points EP (R, gdyn)
for the random sample (magenta) and EP (N , gdyn) for the native sample (yellow).

Figure 6: Plots of the expected free energy µgstat,n (blue) and µgdyn,n (purple) of a random RNA secondary
structure of size n, together with the “average energy points” AvEP (R, gstat) (cyan) and AvEP (R, gdyn)
(magenta) for the random sample.

Figure 7: Plots of the variance of the expected free energy σ2
gstat,n (blue) and σ2

gdyn,n
(purple) of a random

RNA secondary structure of size n, together with the “energy variance points” V arEP (R, gstat) (cyan)
and V arEP (R, gdyn) (magenta) for the random sample.

17

energy model are shown in Figure 5. Looking at both figures, we immediately see that the energies for
our set of randomly generated RNA secondary structures seem to fit to the ones for the considered RNA
database and also to the corresponding analytically obtained energy results from [NS10]. This observation
becomes even more clear by considering Figures 6 and 7. There, we compare the previously introduced
“average energy points” and “energy variance points” to the analytically determined expected free energy
and corresponding variance from [NS10], respectively.

4.2.2 Quantified Results

The previously considered energy comparisons have been presented only by unquantified plots. This
may not be very satisfying, since it is obvious that the free energy would decrease with structure size
and aside from this, it could have been expected that for large randomly generated sets of structures of
a given size, the average energy and corresponding variance fit the analytically obtained energy results
derived under the assumption of a basically equivalent SCFG model for secondary structures. Therefore,
there is a need to consider some sort of quantification and additionally present corresponding quantified
comparison results.
What really matters is the degree to which the energy ranges of the random structures agree, in dis-
tribution, with our biological database. This means we have to find out if the energies related to a
random sample (generated by our unranking method) and those related to a native sample (given by
the structures in our biological database) come from a common distribution. Consequently, we have to
consider the energies of a random sample and those of a native one as two independent sets of values
and determine the extend to which their distributions coincide, or in other words to test for significant
differences between these two sets.
For this reason, we decided to apply one of the most common (non-parametric) significance tests known
from statistics, the so-called Mann-Whitney U-test [MW47], which is widely used as statistical hypothesis
test for assessing whether two independent samples of observations (with arbitrary sample sizes) come
from the same distribution. It is also known as the Wilcoxon rank-sum test [Wil45] which however can
only be applied for equal sample sizes.
Formally, this test is used to check whether the null hypothesis N0 – which states that the two independent
samples X and Y are identically distributed (i.e. F (X) = F (Y)) – can be accepted or else, has to be
rejected. More specifically, the result of such a test, the so-called p-value, is a probability answering
the following question: If the two samples really have the same distribution, what is the probability
that the observed difference is due to chance alone? In other words, were the deviations (differences
between the two samples) the result of chance, or were they due to other factors and how much deviation
can occur before one must conclude that something other than chance causes the differences? The
p-value is called statistically significant if it is unlikely that the differences occurred by chance alone,
according to a preliminary chosen threshold probability, the significance level α (common choices are
e.g. α ∈ {0.10, 0.05, 0.01}). If p ≥ α, the deviation is small enough that chance alone accounts for it;
this is within the range of acceptable deviation. If p < α, we must conclude that some factor other than
chance causes the deviation to be so great, this will lead us to decide that the two sets come from different
distributions.
For our analysis, we again decided to generate the same numbers of random structures for any size
as are given for this size in our biological database, such that random and native sample contain the
same numbers of structures for any occuring size (and hence the sample sizes are equal). Moreoever,
note that the unquantified results presented in Figures 4 and 5 might yield the assumption that for any
structure size, some energy values of randomly generated structures are scattered too widely around
the corresponding expected value, such that those randomly drawn secondary structures can not be
considered realistic (neither with respect to thermodynamics nor with respect to structural composition
and expected shape). In an attempt to disprove that assumption, we decided to perform a series of
Wilcoxon tests by considering a number of different random samples. These samples are created by
obeying a specified energy-based rejection scheme: Do not add a randomly generated structure of a given
size to the sample if its free energy (according to the static or dynamic model or according to both
models) lies outside the corresponding confidence interval(s). Formally, for any preliminary chosen value
k > 1, a generated structure s ∈ Ln is added to the random sample iff

[gstat ∈ Igstat,n(k) (variant “static”)] or [gdyn ∈ Igdyn,n(k) (variant “dynamic”)] or

[gstat ∈ Igstat,n(k) and gdyn ∈ Igdyn,n(k) (variant “both”)];

otherwise it is rejected. This means we accept only a specified deviation of the energy energy(s) of the
random structure s from the corresponding expected free energy µenergy,n and reject structures whose

18

Chosen Percent Models Model Model Resulting
Value Within Used for for Wilcoxon

of Corr. for Native Random p-Value
k Interval Rejection Energies Energies (approx.)

Dynamic Dynamic Dynamic 0.0008438
Static Static Static 1.872 · 10−910

3
√
11
≈ 1.00504 1

Both Dynamic Dynamic 0.000507
Both Static Static 1.851 · 10−10

Dynamic Dynamic Dynamic 0.001567
Static Static Static 1.454 · 10−102

√
5√

19
≈ 1.02598 5

Both Dynamic Dynamic 0.0002654
Both Static Static 1.009 · 10−9

Dynamic Dynamic Dynamic 0.001374
Static Static Static 3.526 · 10−9√

10
3 ≈ 1.05409 10

Both Dynamic Dynamic 0.0004116
Both Static Static 9.018 · 10−10

Dynamic Dynamic Dynamic 0.003618
Static Static Static 2.530 · 10−72√

3
≈ 1.15470 25

Both Dynamic Dynamic 0.001228
Both Static Static 1.162 · 10−7

Dynamic Dynamic Dynamic 0.02394
Static Static Static 1.278 · 10−6√

2 ≈ 1.41421 50
Both Dynamic Dynamic 0.001389
Both Static Static 1.515 · 10−7

Dynamic Dynamic Dynamic 0.1184
Static Static Static 0.001034

2 75
Both Dynamic Dynamic 0.0495
Both Static Static 0.0009445
— Dynamic Dynamic 0.4007∞ 100
— Static Static 0.08961

Table 2: Significance results for statistical hypothesis testing, computed by the Wilcoxon rank-sum
method.

energy differs too much from the expected value. Note that for k = ∞ (confidence interval Ienergy,n(k)
contains 100 percent of the energies energy(s) of all s ∈ Ln), no structures are rejected. Hence, in this
case, the corresponding random sample corresponds to the usual (unrestricted) output of our algorithm.
The Wilcoxon test results for our native sample together with any of a number of random sample sets
generated in the previously described restricted manner, respectively, can be found in Table 2. As we
can see, the best results are achieved for the unrestricted sample sets, where all free energies of randomly
generated structures were allowed during the sample creation process. Moreover, these two results (for
the unrestricted case k = ∞) are not statistically significant when considering the common significance
level α = 0.05, that is in both cases, we can assume that the energies of the random structures and
those of the biological data follow a common distribution. These observations indicate that our weighted
unranking algorithm produces random RNA secondary structures that are – related to the free energy of
such structures (in expectation and variation) – in expectation realistic.
Besides that, it is obvious that the computed p-values are much better for the dynamic energy model
than for the static one. This underlines the suggestion made in [NS10] that, although both energy models
have been proven to be realisitic, due to the more realistic variation of free energies connected to varying
loop length, the dynamic model should be used for possible applications. Since at least for the dynamic
model, the random data fit very nicely with the native data, we can conclude that structures generated
by our non-uniform random generation algorithm behave realistic with respect to free energies and – as
the energy of the overall structure is assumed to be equal to the sum of the substructure energies – rather
likely also with respect to appearance of the different structural motifs of RNA molecules.

4.3 Conclusion

Altogether, we can finally conclude that the non-uniform random generation method proposed in this
article produces appropriate output and may thus be used (for research issues as well as for practi-

19

cal applications) to generate random RNA secondary structures. In fact, for any arbitrary type of
(pseudoknot-free) RNA, a corresponding random sampler can be derived in the presented way. Actually,
our webservice can be used for generating random secondary structures of any specified type of RNA. It
just requires a database of known structures for the respective RNA type as input.
Note that in this work, we abstract from sequence and consider only the structure size as input for
our algorithm. Thus, an interesting problem for future research would be to find a way to extend
the presented realistic SCFG model to additionally deal with RNA sequence. In fact, this work and
especially the considered elaborate SCFG could mark some sort of stepping stone towards new stochastic
RNA secondary structure prediction methods realized by statistical random sampling.

Acknowledgements

The authors wish to thank two anonymous reviewers for their careful and helpful remarks and suggestions
made for a previous version of this article.

References

[AdCC+08] Julien Allali, Yves d’Aubenton Carafa, Cédric Chauve, Alain Denise, Christine Drevet,
Pascal Ferraro, Daniel Gautheret, Claire Herrbach, Fabrice Leclerc, Antoine de Monte,
Aida Ouangraoua, Marie-France Sagot, Cédric Saule, Michel Termier, Claude Thermes,
and Hélène Touzet. Benchmarking RNA secondary structures comparison algorithms. In
Actes des Journées Ouvertes de Biologie, Informatique et Mathématiques – JOBIM’08,
pages 67–68, 2008.

[AE85] S. F. Altschul and B. W. Erickson. Significance of nucleotide sequence alignments: a
method for random sequence permutation that preserves dinucleotide and codon usage.
Mol. Biol. Evol., 2(6):256–538, 1985.

[DE04] Robin D. Dowell and Sean R. Eddy. Evaluation of several lightweight stochastic context-
free grammars for RNA secondary structure prediction. BMC Bioinformatics, 5:71, 2004.

[DFLS04] Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltzmann sam-
plers for the random generation of combinatorial structures. In Combinatorics, Probability,
and Computing, volume 13, pages 577–625, 2004. Special issue on Analysis of Algorithms.

[DL03] Ye Ding and Charles E. Lawrence. A statistical sampling algorithm for RNA secondary
structure prediction. Nucleic Acids Research, 31(24):7280–7301, 2003.

[DPT03] A. Denise, Y. Ponty, and M. Termier. Random generation of structured genomic sequences.
In Proceedings of RECOMB 2003, page 3 pages (poster), 2003.

[FFP07] Philippe Flajolet, Eric Fusy, and Carine Pivoteau. Boltzmann sampling of unlabelled
structures. In Proceedings of ANALCO’07 (Analytic Combinatorics and Algorithms) Con-
ference, pages 201–211. SIAM Press, January 2007.

[FH72] K. S. Fu and T. Huang. Stochastic grammars and languages. International Journal of
Computer and Information Sciences, 1(2):135–170, 1972.

[Fit83] W. M. Fitch. Random sequences. Journal of Molecular Biology, 163:171–176, 1983.

[FS09] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University
Press, January 2009.

[FZV94] Philippe Flajolet, Paul Zimmermann, and Bernard Van Cutsem. A calculus for the random
generation of combinatorial structures. Theoretical Computer Science, 132(2):1–35, 1994.

[Har78] Michael A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.

[HF71] T. Huang and K. S. Fu. On stochastic context-free languages. Information Sciences,
3:201–224, 1971.

[Hof03] Ivo L. Hofacker. The vienna RNA secondary structure server. Nucleic Acids Research,
31(13):3429–3431, 2003.

20

[HSS98] Ivo L. Hofacker, Peter Schuster, and Peter F. Stadler. Combinatorics of RNA secondary
structures. Discrete Applied Mathematics, 88:207–237, 1998.

[KH99] B. Knudsen and J. Hein. RNA secondary structure prediction using stochastic context-free
grammars and evolutionary history. Bioinformatics, 15(6):446–454, 1999.

[KH03] B. Knudsen and J. Hein. Pfold: RNA secondary structure prediction using stochastic
context-free grammars. Nucleic Acids Research, 31(13):3423–3428, 2003.

[Lie98] Jens Liebehenschel. Ranking and unranking of lexicographically ordered words: an average-
case analysis. J. Autom. Lang. Comb., 2(4):227–268, 1998.

[MM01] Conrado Mart́ınez and Xavier Molinero. A generic approach for the unranking of labeled
combinatorial classes. Random Struct. Algorithms, 19(3-4):472–497, 2001.

[Mol05] Xavier Molinero. Ordered Generation of Classes of Combinatorial Structures. PhD thesis,
Universitat Politècnica de Catalunya, 2005.

[MSZT99] D. H. Mathews, J. Sabina, M. Zuker, and D. H. Turner. Expanded sequence dependence
of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol.
Biol., 288:911–940, 1999.

[MW47] Henry Mann and Donald Whitney. On a test of whether one of two random variables is
stochastically larger than the other. Annals of Mathematical Statistics, 18:50–60, 1947.

[Neb02a] Markus E. Nebel. Combinatorial properties of RNA secondary structures. Journal of
Computational Biology, 9(3):541–574, 2002.

[Neb02b] Markus E. Nebel. On a statistical filter for RNA secondary structures. Technical report,
Frankfurter Informatik-Berichte, 5 2002.

[Neb04a] Markus E. Nebel. Identifying good predictions of RNA secondary structure. Proceedings
of the Pacific Symposium on Biocomputing, pages 423–434, 2004.

[Neb04b] Markus E. Nebel. Investigation of the Bernoulli-model of RNA secondary structures.
Bulletin of Mathematical Biology, 66:925–964, 2004.

[NS10] Markus E. Nebel and Anika Scheid. Analysis of the free energy in a stochastic rna secondary
structure model. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
November 2010.

[NW78] Albert Nijenhuis and Herbert S. Wilf. Combinatorial Algorithms. Academic Press, second
edition, 1978.

[Pon08] Yann Ponty. Efficient sampling of RNA secondary structures from the boltzmann ensemble
of low-energy: the boustrophedon method. Journal of Mathematical Biology, 56:107–127,
2008.

[SBH+94] Y. Sakakibara, M. Brown, R. Hughey, I. S. Mian, K. Sjölander, R. C. Underwood, and
D. Haussler. Stochastic context-free grammars for tRNA modeling. Nucleic Acids Research,
22:5112–5120, 1994.

[SW78] P. R. Stein and M. S. Waterman. On some new sequences generalizing the catalan and
motzkin numbers. Discrete Mathematics, 26:216–272, 1978.

[VC85] G. Viennot and M. Vauchaussade De Chaumont. Enumeration of RNA secondary struc-
tures by complexity. Mathematics in medicine and biology, Lecture Notes in Biomathe-
matics, 57:360–365, 1985.

[Wat78] M. S. Waterman. Secondary structure of single-stranded nucleic acids. Advances in Math-
ematics Supplementary Studies, 1:167–212, 1978.

[WdPWW02] Jan Wuyts, Yves Van de Peer, Tina Winkelmans, and Rupert De Wachter. The european
database on small subunit ribosomal RNA. Nucleic Acids Research, 30(1):183–185, 2002.

[WFHS99] S. Wuchty, W. Fontana, I. Hofacker, and P. Schuster. Complete suboptimal folding of
RNA and the stability of secondary structures. Biopolymers, 49:145–165, 1999.

21

[Wil45] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1:80–
83, 1945.

[WN10a] Frank Weinberg and Markus E. Nebel. Extending stochastic context-free grammars for an
application in bioinformatics. In 4th International Conference on Language and Automata
Theory and Applications (LATA2010), 2010.

[WN10b] Frank Weinberg and Markus E. Nebel. Non uniform generation of combinatorial objects.
Technical report, Technische Universität Kaiserslautern, 7 2010.

[WRdP+01] Jan Wuyts, Peter De Rijk, Yves Van de Peer, Tina Winkelmans, and Rupert De Wachter.
The european large subunit ribosomal RNA database. Nucleic Acids Research, 29(1):175–
177, 2001.

[XSB+98] T. Xia, J. SantaLucia Jr., M. E. Burkard, R. Kierzek, S. J. Schroeder, X. Jiao, C. Cox, and
D. H. Turner. Thermodynamic parameters for an expanded nearest-neighbor model for
formation of RNA duplexes with watson-crick base pairs. Biochemistry, 37:14719–14735,
1998.

[ZS84] M. Zuker and D. Sankoff. RNA secondary structures and their prediction. Bull. Mathe-
matical Biology, 46:591–621, 1984.

[Zuk89] M. Zuker. On finding all suboptimal foldings of an RNA molecule. Science, 244:48–52,
1989.

[Zuk03] M. Zuker. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic
Acids Res., 31(13):3406–3415, 2003.

A How to Construct a Weighted Unranking Algorithm from a
Given SCFG

The purpose of this section is to give a rather small example for applying the construction scheme
propsed in [WN10b] to proceed from an arbitrary SCFG to reweighted normal form (RNF) and then to
the corresponding weighted combinatorial classes which allow for non-uniform generation by means of
unranking.

Example A.1. Let us consider the SCFG Gd, which contains the following rules:

w1 : S → B,
w2 : B → (((B))), w3 : B → |||C,
w4 : C → ε, w5 : C → |||C.

To apply the approach presented in [WN10b] to transform a given SCFG to RNF, the grammar needs to
be ε-free and loop-free. Thus, we first have to transform grammar Gd into the following one:

ŵ1 : S → B,
ŵ2 : B → (((B))), ŵ3 : B → C,
ŵ4 : C → |||, ŵ5 : C → |||C.

The transformation of Gd into RNF now works as follows: First, we have to gather all possible chains
A→ A1 → A2 → . . .→ α, where A 6= S and |α| = 1. These chains are B → C, B → C → ||| and C → |||;
the rules B → C and C → ||| are then removed. Second, we have to replace each of these chains by a
specific new rule. In fact, we have to add BC,ε → C, B|||,C → ||| and C|||,ε → ||| to the new set of productions.
Consequently, our new rule set is now given by

ŵ1 : S → B,
ŵ2 : B → (((B))),
ŵ5 : C → |||C,

1 : BC,ε → C, 1 : B|||,C → |||, 1 : C|||,ε → |||.

Third, for each occurence of a non-terminal symbol A in the conclusion of a production and each previously

22

added new rule Aα,A1A2... → α corresponding to a chain A → A1 → A2 → . . . → α, add a specific new
rule. This way, we obtain the following production set:

ŵ1 : S → B, ŵ1 · ŵ3 : S → BC,ε, ŵ1 · ŵ3 · ŵ4 : S → B|||,C ,

ŵ2 : B → (((B))), ŵ2 · ŵ3 : B → (((BC,ε))), ŵ2 · ŵ3 · ŵ4 : B → (((B|||,C))),

ŵ5 : C → |||C, ŵ5 · ŵ4 : C → |||C|||,ε,
1 : BC,ε → C, 1 : B|||,C → |||, 1 : C|||,ε → |||.

Fourth, each intermediate symbol that no longer occurs as premise in any of the productions has to be
removed and fifth, each production of the form S → α, where S is the axiom and |α| > 1 has to be
changed in a specific way. However, since in our case, there is obviously nothing left to do, the transfor-
mation of Gd into RNF is finished.

For Gd (in RNF), where all production weights are rational, we can determine the common denominator
s of the weights of productions with premise S, as well as the common denominator c of the weights of
the remaining productions (i.e., of the productions with premise B or C). Then, the reweighting of the
production rules of (the RNF of) Gd is done by multiplying the weights of productions with source S by
s, and the weights of the other productions A → α, where A 6= S, by the factor c|α|−1. After that, we
obtain the following reweighted grammar G′d:

w′1 : S → B, w′2 : S → BC,ε, w′3 : S → B|||,C ,

w′4 : B → (((B))), w′5 : B → (((BC,ε))), w′6 : B → (((B|||,C))),

w′7 : C → |||C, w′8 : C → |||C|||,ε,
1 : BC,ε → C, 1 : B|||,C → |||, 1 : C|||,ε → |||,

where each w′i, 1 ≤ i ≤ 8, is integral.
The (now weighted) grammar can easily be translated into a corresponding admissible specification, which
includes the weighting of all involved combinatorial (sub)classes, as described earlier. For the reweighted
grammar G′d, this specification is given by the following equations:

S1 = B, S2 = BC,ε, S3 = B|||,C ,

B1 = Z(((× B × Z))), B2 = Z(((× BC,ε ×Z))), B3 = Z(((× B|||,C ×Z))),

C1 = Z||| × C, C2 = Z||| × C|||,ε,
BC,ε = C, B|||,C = Z|||, C|||,ε = Z|||,

S = w′1 · S1 + w′2 · S2 + w′3 · S3,
B = w′4 · B1 + w′5 · B2 + w′6 · B3,
C = w′7 · C1 + w′8 · C2,

which can be simplified in the following way:

B1 = Z(((× B × Z))), B2 = Z(((× C × Z))), B3 = Z(((×Z||| ×Z))),
C1 = Z||| × C, C2 = Z||| ×Z|||,

S = w′1 · B + w′2 · C + w′3 · Z|||,
B = w′4 · B1 + w′5 · B2 + w′6 · B3,
C = w′7 · C1 + w′8 · C2.

As described earlier, this specification (with weighted classes) derived from reweighted grammar G′d
transforms immediately into a recursion for the function size of all needed combinatorial classes. For G′d,

23

the recursion for the function size has the following form:

size(I, n) :=

size(B, n− 2) I = B1,
size(C, n− 2) I = B2,
1 I = B3 and n = 3,

size(C, n− 1) I = C1,
1 I = C2 and n = 2,

w′1 · size(B, n) + w′2 · size(C, n) + w′3 · 1 I = S and n = 1,

w′1 · size(B, n) + w′2 · size(C, n) + w′3 · 0 I = S and n 6= 1,

w′4 · size(B1, n) + w′5 · size(B2, n) + w′6 · size(B3, n) I = B,
w′7 · size(C1, n) + w′8 · size(C2, n) I = C,
0 else.

This recursive size function (with weighted class sizes) can now be used for the straightforward con-
struction of a corresponding algorithm for the non-uniform generation of elemets of L(Gd) by means of
unranking, as proposed in [WN10b].

24

Supplementary Material

Sm-I Derivation of the Algorithm

In this section, we give a complete and detailled description of the derivation of our weighted unranking
algorithm for RNA secondary structures. The different steps are made according to the approach de-
scribed in [WN10b] to get an unranking algorithm that generates random RNA secondary structures of
a given size n according to the distribution on all these structures.

Sm-I.1 Considered (unambiguous, ε-free and loop-free) SCFG

First, note that in [NS10], to obtain the stochastic model for RNA secondary structures derived from real-
world RNA data, the following unambiguous SCFG which unambiguously generates exactly the language
L given in Definition 3.1 has been used:

Definition Sm-I.1. The unambiguous SCFG Gsto generating exactly the language L is given by Gsto =
(IGsto ,ΣGsto , RGsto , S), where

IGsto = {S, T, C,A, L,G,B, F,H, P,Q,R, J,K,M,N,U},

ΣGsto = {(((,))), |||} and RGsto contains exactly the following rules:

p1 : S → TAC,
p2 : T → TAC, p3 : T → C,
p4 : C → C|||, p5 : C → ε,
p6 : A→ (((L))),
p7 : L→ (((L))), p8 : L→M , p9 : L→ P , p10 : L→ Q,
p11 : L→ R, p12 : L→ F , p13 : L→ G,
p14 : G→ (((L)))|||, p15 : G→ (((L)))B||||||, p16 : G→ |||(((L))), p17 : G→ ||||||B(((L))),
p18 : B → B|||, p19 : B → ε,
p20 : F → |||||||||, p21 : F → ||||||||||||, p22 : F → |||||||||||||||H,
p23 : H → H|||, p24 : H → ε,
p25 : P → |||(((L)))|||, p26 : P → |||(((L)))||||||, p27 : P → ||||||(((L)))|||, p28 : P → ||||||(((L)))||||||,
p29 : Q→ ||||||(((L)))K|||||||||, p30 : Q→ |||||||||J(((L)))K||||||,
p31 : R→ |||(((L)))K|||||||||, p32 : R→ |||||||||J(((L)))|||,
p33 : J → J|||, p34 : J → ε,
p35 : K → K|||, p36 : K → ε,
p37 : M → U(((L)))U(((L)))N ,
p38 : N → U(((L)))N , p39 : N → U ,
p40 : U → U|||, p41 : U → ε.

In this grammar, different intermediate symbols have been used to distinguish between different sub-
structures. In fact, the reason why this grammar has so many production rules is that the grammar must
be able to distinguish between all the different classes of substructures for which there are different free
energy rules according to Turner’s thermodynamic model considered in [NS10].
However, as ε-freeness and loop-freeness are required preliminarily, we have to consider another unam-
biguous SCFG generating the same language L, where we have to guarantee that the same substructures
are distinguished as are distinguished in Gsto.
Using the usual way of transforming a non-ε-free grammar into an ε-free one, the following definition can
immediately be obtained from the previous one:

Definition Sm-I.2. The unambigous and ε-free SCFG G′sto generating exactly the language L is given
by G′sto = (IG′sto ,ΣG′sto , RG′sto , S

′), where

IG′sto = {S′, S, T, C,A, L,G,B, F,H, P,Q,R, J,K,M,N,U},

ΣG′sto = {(((,))), |||} and RG′sto contains exactly the following rules:

p′0 : S′ → S,
p′1 : S → A, p′2 : S → AC, p′3 : S → TA, p′4 : S → TAC,

25

p′5 : T → A, p′6 : T → AC, p′7 : T → TA, p′8 : T → TAC,
p′9 : T → C,
p′10 : C → |||, p′11 : C → C|||,
p′12 : A→ (((L))),
p′13 : L→ (((L))), p′14 : L→M , p′15 : L→ P , p′16 : L→ Q,
p′17 : L→ R, p′18 : L→ F , p′19 : L→ G,
p′20 : G→ (((L)))|||, p′21 : G→ (((L)))||||||, p′22 : G→ (((L)))B||||||,
p′23 : G→ |||(((L))), p′24 : G→ ||||||(((L))), p′25 : G→ ||||||B(((L))),
p′26 : B → |||, p′27 : B → B|||,
p′28 : F → |||||||||, p′29 : F → ||||||||||||, p′30 : F → |||||||||||||||, p′31 : F → |||||||||||||||H,
p′32 : H → |||, p′33 : H → H|||,
p′34 : P → |||(((L)))|||, p′35 : P → |||(((L)))||||||, p′36 : P → ||||||(((L)))|||, p′37 : P → ||||||(((L)))||||||,
p′38 : Q→ ||||||(((L)))|||||||||, p′39 : Q→ ||||||(((L)))K|||||||||, p′40 : Q→ |||||||||(((L)))||||||, p′41 : Q→ |||||||||J(((L)))||||||,
p′42 : Q→ |||||||||(((L)))K||||||, p′43 : Q→ |||||||||J(((L)))K||||||,
p′44 : R→ |||(((L)))|||||||||, p′45 : R→ |||(((L)))K|||||||||, p′46 : R→ |||||||||(((L)))|||, p′47 : R→ |||||||||J(((L)))|||,
p′48 : J → |||, p′49 : J → J|||,
p′50 : K → |||, p′51 : K → K|||,
p′52 : M → (((L)))(((L))), p′53 : M → U(((L)))(((L))), p′54 : M → (((L)))U(((L))), p′55 : M → (((L)))(((L)))N ,
p′56 : M → U(((L)))U(((L))), p′57 : M → U(((L)))(((L)))N , p′58 : M → (((L)))U(((L)))N , p′59 : M → U(((L)))U(((L)))N ,
p′60 : N → (((L))), p′61 : N → U(((L))), p′62 : N → (((L)))N , p′63 : N → U(((L)))N ,
p′64 : N → U ,
p′65 : U → |||, p′66 : U → U|||.

Unfortunately, the set of productions of G′sto contains productions with up to 5 non-terminal symbols in
the conclusion. This is not acceptable for our purpose, for the following reason: the desired unranking
algorithm makes use of the size of combinatorial classes whose representations somehow are derived from
CFGs with particular integer weights on their productions. If we constructed this WCFG by starting
with the grammar G′sto, then this would yield a huge number of production rules. Consequently, the
translation would imply a huge specification of the combinatorial classes and the corresponding function
to compute their sizes and thus the corresponding unranking algorithm would have to distinguish between
an unnecessarily and most importantly unacceptably large number of cases.
Nevertheless, the size of the production set of the weighted grammar underlying the desired unranking
algorithm can be significantly reduced by starting with a modification of grammar G′sto which has only
production rules with minimum possible numbers of non-terminal symbols in the conclusion. In fact, by
transforming G′sto appropriately considering this observation, we obtained the SCFG Ĝsto:

Definition Sm-I.3. The unambiguous ε-free SCFG Ĝsto generating exactly the language L is given by
Ĝsto = (IĜsto ,ΣĜsto , RĜsto , S

′), where

IĜsto = {S′, E, S, T, C,A, L,G,D,B, F,H, P,Q,R, V,W,O, J,K,M,X, Y, Z,N,U},

ΣĜsto = {(((,))), |||} and RĜsto contains exactly the following rules:

p̂1 : S′ → E,
p̂2 : E → S, p̂3 : E → SC,
p̂4 : S → A, p̂5 : S → TA,
p̂6 : T → E, p̂7 : T → C,
p̂8 : C → |||, p̂9 : C → C|||,
p̂10 : A→ (((L))),
p̂11 : L→ A, p̂12 : L→M , p̂13 : L→ P , p̂14 : L→ Q,
p̂15 : L→ R, p̂16 : L→ F , p̂17 : L→ G,
p̂18 : G→ A|||, p̂19 : G→ AD, p̂20 : G→ |||A, p̂21 : G→ DA,
p̂22 : D → B|||,
p̂23 : B → |||, p̂24 : B → B|||,
p̂25 : F → |||||||||, p̂26 : F → ||||||||||||, p̂27 : F → ||||||||||||H,
p̂28 : H → |||, p̂29 : H → H|||,
p̂30 : P → |||A|||, p̂31 : P → |||A||||||, p̂32 : P → ||||||A|||, p̂33 : P → ||||||A||||||,
p̂34 : Q→ ||||||O||||||, p̂35 : Q→ ||||||V |||,
p̂36 : R→ |||O||||||, p̂37 : R→ ||||||W |||,
p̂38 : V → JO,

26

p̂39 : W → JA,
p̂40 : O → AK,
p̂41 : J → |||, p̂42 : J → J|||,
p̂43 : K → |||, p̂44 : K → K|||,
p̂45 : M → XY ,
p̂46 : X → A, p̂47 : X → UA,
p̂48 : Y → Z,
p̂49 : Z → X, p̂50 : Z → XN ,
p̂51 : N → Z, p̂52 : N → U ,
p̂53 : U → |||, p̂54 : U → U|||.

Sm-I.2 Transforming our SCFG into RNF

Now, we can construct the desired weighted grammar that will be underlying our unranking algorithm:
In the first step, we gather all possible chains of productions that do not lengthen the sentential form.
In fact, we have to consider all rules A→ α, A 6= S′, with |α| = 1, to obtain all such chains8. Hence, we
have to consider the following set R1

rnf of 22 production rules:

p̂2 : E → S,
p̂4 : S → A,
p̂6 : T → E, p̂7 : T → C,
p̂8 : C → |||,
p̂11 : L→ A, p̂12 : L→M , p̂13 : L→ P , p̂14 : L→ Q,
p̂15 : L→ R, p̂16 : L→ F , p̂17 : L→ G,
p̂23 : B → |||,
p̂28 : H → |||,
p̂41 : J → |||,
p̂43 : K → |||,
p̂46 : X → A,
p̂48 : Y → Z,
p̂49 : Z → X,
p̂51 : N → Z, p̂52 : N → U ,
p̂53 : U → |||.

Thus, the following 32 chains are gathered in step 1:

E ⇒ S, targets[E] = {(S, λE,S := p̂2, ε),
E ⇒ S ⇒ A, (A, λE,A := p̂2 · p̂4, S)},

S ⇒ A, targets[S] = {(A, λS,A := p̂4, ε)},

T ⇒ E, targets[T] = {(E, λT,E := p̂6, ε),
T ⇒ C, (C, λT,C := p̂7, ε),
T ⇒ C ⇒ |||, (|||, λT,||| := p̂7 · p̂8, C),
T ⇒ E ⇒ S, (S, λT,S := p̂6 · p̂2, E)},
T ⇒ E ⇒ S ⇒ A, (A, λT,A := p̂6 · p̂2 · p̂4, ES)},

C ⇒ |||, targets[C] = {(|||, λC,||| := p̂8, ε)},

L⇒ A, targets[L] = {(A, λL,A := p̂11, ε),
L⇒M , (M,λL,M := p̂12, ε),
L⇒ P , (P, λL,P := p̂13, ε),
L⇒ Q, (Q,λL,Q := p̂14, ε),
L⇒ R, (R, λL,R := p̂15, ε),
L⇒ F , (F, λL,F := p̂16, ε),
L⇒ G, (G,λL,G := p̂17, ε)},

B ⇒ |||, targets[B] = {(|||, λB,||| := p̂23, ε)},

8Note that these rules will be removed after step 1.

27

H ⇒ |||, targets[H] = {(|||, λH,||| := p̂28, ε)},

J ⇒ |||, targets[J] = {(|||, λJ,||| := p̂41, ε)},

K ⇒ |||, targets[K] = {(|||, λK,||| := p̂43, ε)},

X ⇒ A, targets[X] = {(A, λX,A := p̂46, ε)},

Y ⇒ Z, targets[Y] = {(Z, λY,Z := p̂48, ε),
Y ⇒ Z ⇒ X, (X,λY,X := p̂48 · p̂49, Z),
Y ⇒ Z ⇒ X ⇒ A, (A, λY,A := p̂48 · p̂49 · p̂46, ZX)},

Z ⇒ X, targets[Z] = {(X,λZ,X := p̂49, ε),
Z ⇒ X ⇒ A, (A, λZ,A := p̂49 · p̂46, X)},

N ⇒ Z, targets[N] = {(Z, λN,Z := p̂51, ε),
N ⇒ U , (U, λN,U := p̂52, ε),
N ⇒ U ⇒ |||, (|||, λN,||| := p̂52 · p̂53, U),
N ⇒ Z ⇒ X, (X,λN,X := p̂51 · p̂49, Z),
N ⇒ Z ⇒ X ⇒ A, (A, λN,A := p̂51 · p̂49 · p̂46, ZX)},

U ⇒ |||, targets[U] = {(|||, λU,||| := p̂53, ε)}.

Furthermore, the 22 production rules contained in R1
rnf are now removed. This results in the following

set R1
Ĝsto

:= RĜsto \R
1
rnf of 32 rules:

p̂1 : S′ → E,
p̂3 : E → SC,
p̂5 : S → TA,
p̂9 : C → C|||,
p̂10 : A→ (((L))),
p̂18 : G→ A|||, p̂19 : G→ AD, p̂20 : G→ |||A, p̂21 : G→ DA,
p̂22 : D → B|||,
p̂24 : B → B|||,
p̂25 : F → |||||||||, p̂26 : F → ||||||||||||, p̂27 : F → ||||||||||||H,
p̂29 : H → H|||,
p̂30 : P → |||A|||, p̂31 : P → |||A||||||, p̂32 : P → ||||||A|||, p̂33 : P → ||||||A||||||,
p̂34 : Q→ ||||||O||||||, p̂35 : Q→ ||||||V |||,
p̂36 : R→ |||O||||||, p̂37 : R→ ||||||W |||,
p̂38 : V → JO,
p̂39 : W → JA,
p̂40 : O → AK,
p̂42 : J → J|||,
p̂44 : K → K|||,
p̂45 : M → XY ,
p̂47 : X → UA,
p̂50 : Z → XN ,
p̂54 : U → U|||.

Additionally, in step 2, for each chain a new intermediate symbol and a new production are introduced.
Thus, according to the 32 chains gathered in step 1, we here obtain the following set R2

rnf of 32 new
production rules:

1 : ES,ε → S, 1 : EA,S → A,
1 : SA,ε → A,

1 : TE,ε → E, 1 : TC,ε → C, 1 : T |||,C → |||,
1 : TS,E → S, 1 : TA,ES → A,

1 : C|||,ε → |||,

28

1 : LA,ε → A, 1 : LM,ε →M , 1 : LP,ε → P , 1 : LQ,ε → Q,
1 : LR,ε → R, 1 : LF,ε → F , 1 : LG,ε → G,

1 : B|||,ε → |||,
1 : H|||,ε → |||,
1 : J|||,ε → |||,
1 : K|||,ε → |||,
1 : XA,ε → A,
1 : Y Z,ε → Z, 1 : Y X,Z → X, 1 : Y A,ZX → A,
1 : ZX,ε → X,
1 : ZA,X → A,

1 : NZ,ε → Z, 1 : NU,ε → U , 1 : N |||,U → |||,
1 : NX,Z → X, 1 : NA,ZX → A,

1 : U |||,ε → |||.

In step 3, for each occurrence of a non-terminal symbol in the conclusion of a production and each chain
starting with this non-terminal symbol, we have to add a new production with the corresponding new
intermediate symbol instead of the considered one. Thus, in step 3, the remaining 32 production rules
from R1

Ĝsto
= RĜsto \ R

1
rnf are transformed (according to R2

rnf) into the following set R2
Ĝsto

of 79 new

rules:

p̂1 : S′ → E, p̂1 · λE,S : S′ → ES,ε,
p̂1 · λE,A : S′ → EA,S ,

p̂3 : E → SC, p̂3 · λS,A : E → SA,εC,

p̂3 · λC,||| : E → SC|||,ε, p̂3 · λS,A · λC,||| : E → SA,εC|||,ε,
p̂5 : S → TA, p̂5 · λT,E : S → TE,εA,

p̂5 · λT,C : S → TC,εA, p̂5 · λT,||| : S → T |||,CA,
p̂5 · λT,S : S → TS,EA, p̂5 · λT,A : S → TA,ESA,

p̂9 : C → C|||, p̂9 · λC,||| : C → C|||,ε|||,
p̂10 : A→ (((L))), p̂10 · λL,A : A→ (((LA,ε))),

p̂10 · λL,M : A→ (((LM,ε))), p̂10 · λL,P : A→ (((LP,ε))),
p̂10 · λL,Q : A→ (((LQ,ε))), p̂10 · λL,R : A→ (((LR,ε))),
p̂10 · λL,F : A→ (((LF,ε))), p̂10 · λL,G : A→ (((LG,ε))),

p̂18 : G→ A|||, p̂19 : G→ AD,
p̂20 : G→ |||A, p̂21 : G→ DA,

p̂22 : D → B|||, p̂22 · λB,||| : D → B|||,ε|||,
p̂24 : B → B|||, p̂24 · λB,||| : B → B|||,ε|||,
p̂25 : F → |||||||||, p̂26 : F → ||||||||||||,
p̂27 : F → ||||||||||||H, p̂27 · λH,||| : F → ||||||||||||H|||,ε,
p̂29 : H → H|||, p̂29 · λH,||| : H → H|||,ε|||,
p̂30 : P → |||A|||, p̂31 : P → |||A||||||,
p̂32 : P → ||||||A|||, p̂33 : P → ||||||A||||||,
p̂34 : Q→ ||||||O||||||, p̂35 : Q→ ||||||V |||,
p̂36 : R→ |||O||||||, p̂37 : R→ ||||||W |||,
p̂38 : V → JO, p̂38 · λJ,||| : V → J|||,εO,

p̂39 : W → JA, p̂39 · λJ,||| : W → J|||,εA,

p̂40 : O → AK, p̂40 · λK,||| : O → AK|||,ε,

p̂42 : J → J|||, p̂42 · λJ,||| : J → J|||,ε|||,
p̂44 : K → K|||, p̂44 · λK,||| : K → K|||,ε|||,
p̂45 : M → XY , p̂45 · λY,Z : M → XY Z,ε,

p̂45 · λY,X : M → XY X,Z , p̂45 · λY,A : M → XY A,ZX ,
p̂45 · λX,A : M → XA,εY , p̂45 · λX,A · λY,Z : M → XA,εY Z,ε,

p̂45 · λX,A · λY,X : M → XA,εY X,Z , p̂45 · λX,A · λY,A : M → XA,εY A,ZX ,

p̂47 : X → UA, p̂47 · λU,||| : X → U |||,εA,
p̂50 : Z → XN , p̂50 · λN,Z : Z → XNZ,ε,

p̂50 · λN,U : Z → XNU,ε, p̂50 · λN,||| : Z → XN |||,U ,
p̂50 · λN,X : Z → XNX,Z , p̂50 · λN,A : Z → XNA,ZX ,
p̂50 · λX,A : Z → XA,εN , p̂50 · λX,A · λN,Z : Z → XA,εNZ,ε,

p̂50 · λX,A · λN,U : Z → XA,εNU,ε, p̂50 · λX,A · λN,||| : Z → XA,εN |||,U ,

29

p̂50 · λX,A · λN,X : Z → XA,εNX,Z , p̂50 · λX,A · λN,A : Z → XA,εNA,ZX ,

p̂54 : U → U|||, p̂54 · λU,||| : U → U |||,ε|||.

In step 4, we must delete all intermediate symbols that no longer occur as premise. Obviously, interme-
diate symbols no longer occurring as premise of a production are

T, L,N, Y.

We easily observe that the productions that contain at least one of these 4 intermediate symbols in the
conclusion and thus have to be removed are exactly the following ones:

p̂5 : S → TA,
p̂10 : A→ (((L))),
p̂45 : M → XY , p̂45 · λX,A : M → XA,εY ,
p̂50 : Z → XN , p̂50 · λX,A : Z → XA,εN .

Consequently, after the removal of these 6 rules from R2
Ĝsto

, there still remain 73 new production rules.

Finally, in step 5, we must make sure that the conclusion of all productions with premise S′ (axiom

of Ĝsto that we started with) does not have a length greater than 1. However, since there is only one

production with premise S′ in our start grammar Ĝsto and the conclusion of this production has size 1,
there is nothing to do. Thus, the resulting new grammar is given by:

Definition Sm-I.4. The WCFG Ĝ *
sto generating exactly the language L is given by Ĝ *

sto = (IĜ *
sto
∪

I ′
Ĝ *
sto

,ΣĜ *
sto
, RĜ *

sto
∪R′

Ĝ *
sto

, S′), where

IĜ *
sto

= {S′, E, S, C,A,G,D,B, F,H, P,Q,R, V,W,O, J,K,M,X,Z, U},

I ′Ĝ *
sto

= {ES,ε, EA,S , SA,ε,

TE,ε, TC,ε, T |||,C , TS,E , TA,ES , C|||,ε,

LA,ε, LM,ε, LP,ε, LQ,ε, LR,ε, LF,ε, LG,ε,

B|||,ε, H|||,ε, J|||,ε,K|||,ε,

XA,ε, Y Z,ε, Y X,Z , Y A,ZX , ZX,ε, ZA,X ,

NZ,ε, NU,ε, N |||,U , NX,Z , NA,ZX , U |||,ε},

ΣĜ *
sto

= {(((,))), |||} and RĜ *
sto

contains exactly the following rules:

λ1 : S′ → E, λ2 : S′ → ES,ε, λ3 : S′ → EA,S ,

λ4 : E → SC, λ5 : E → SA,εC, λ6 : E → SC|||,ε, λ7 : E → SA,εC|||,ε,

λ8 : S → TE,εA, λ9 : S → TC,εA, λ10 : S → T |||,CA,
λ11 : S → TS,EA, λ12 : S → TA,ESA,

λ13 : C → C|||, λ14 : C → C|||,ε|||,
λ15 : A→ (((LA,ε))), λ16 : A→ (((LM,ε))), λ17 : A→ (((LP,ε))), λ18 : A→ (((LQ,ε))),
λ19 : A→ (((LR,ε))), λ20 : A→ (((LF,ε))), λ21 : A→ (((LG,ε))),
λ22 : G→ A|||, λ23 : G→ AD, λ24 : G→ |||A, λ25 : G→ DA,

λ26 : D → B|||, λ27 : D → B|||,ε|||,
λ28 : B → B|||, λ29 : B → B|||,ε|||,
λ30 : F → |||||||||, λ31 : F → ||||||||||||, λ32 : F → ||||||||||||H, λ33 : F → ||||||||||||H|||,ε,
λ34 : H → H|||, λ35 : H → H|||,ε|||,
λ36 : P → |||A|||, λ37 : P → |||A||||||, λ38 : P → ||||||A|||, λ39 : P → ||||||A||||||,
λ40 : Q→ ||||||O||||||, λ41 : Q→ ||||||V |||,
λ42 : R→ |||O||||||, λ43 : R→ ||||||W |||,
λ44 : V → JO, λ45 : V → J|||,εO,

λ46 : W → JA, λ47 : W → J|||,εA,

λ48 : O → AK, λ49 : O → AK|||,ε,

λ50 : J → J|||, λ51 : J → J|||,ε|||,
λ52 : K → K|||, λ53 : K → K|||,ε|||,

30

λ54 : M → XY Z,ε, λ55 : M → XY X,Z , λ56 : M → XY A,ZX ,
λ57 : M → XA,εY Z,ε, λ58 : M → XA,εY X,Z , λ59 : M → XA,εY A,ZX ,

λ60 : X → UA, λ61 : X → U |||,εA,

λ62 : Z → XNZ,ε, λ63 : Z → XNU,ε, λ64 : Z → XN |||,U ,
λ65 : Z → XNX,Z , λ66 : Z → XNA,ZX ,

λ67 : Z → XA,εNZ,ε, λ68 : Z → XA,εNU,ε, λ69 : Z → XA,εN |||,U ,
λ70 : Z → XA,εNX,Z , λ71 : Z → XA,εNA,ZX ,

λ72 : U → U|||, λ73 : U → U |||,ε|||,

whereas R′
Ĝ *
sto

contains exactly the following rules:

λ74 : ES,ε → S, λ75 : EA,S → A,
λ76 : SA,ε → A,

λ77 : TE,ε → E, λ78 : TC,ε → C, λ79 : T |||,C → |||,
λ80 : TS,E → S, λ81 : TA,ES → A,

λ82 : C|||,ε → |||,
λ83 : LA,ε → A, λ84 : LM,ε →M , λ85 : LP,ε → P , λ86 : LQ,ε → Q,
λ87 : LR,ε → R, λ88 : LF,ε → F , λ89 : LG,ε → G,

λ90 : B|||,ε → |||,
λ91 : H|||,ε → |||,
λ92 : J|||,ε → |||,
λ93 : K|||,ε → |||,
λ94 : XA,ε → A,
λ95 : Y Z,ε → Z, λ96 : Y X,Z → X, λ97 : Y A,ZX → A,
λ98 : ZX,ε → X, λ99 : ZA,X → A,

λ100 : NZ,ε → Z, λ101 : NU,ε → U , λ102 : N |||,U → |||,
λ103 : NX,Z → X, λ104 : NA,ZX → A,

λ105 : U |||,ε → |||.

Sm-I.3 Reweighting the Production Rules

Now, the weights of the 73 production rules given in the subset of productions RĜ *
sto

have to be reweighted.

In order to achieve this goal, we first have to compute the two common denominators s and c, where s
is the common denominator of the weights of productions with premise S′ (i.e., of productions number 1
to 3), and c is the common denominator of the weights of the remaining productions (i.e., of productions

number 4 to 73) of RĜ *
sto

. Using the rounded probabilities (weights) for the production rules of Ĝ *
sto as

given in Table 3 shown in Section Sm-II, we immediately find the smallest common denominators to be
s = 10, 000 and c = 10, 000.
The desired new weights for the considered set of productions RĜ *

sto
are then computed by multiplying

the old weights of productions with source S′ by s, and by multiplying the old weights of productions
A→ α, A 6= S′ (and A ∈ IĜ *

sto
), by c|α|−1.

Formally, for the reweighted set of productions RĜ *
sto

, we get the following weights:

µi := λi · s, for i ∈ {1, 2, 3}

and
µi := λi · c|αi|−1, where λi : Ai → αi, for i ∈ {4, . . . , 73}.

The resulting integer weights can be found in Table 4 shown in Section Sm-II.

Sm-I.4 Transforming Reweighted Grammar into Admissible Specification

Given the reweighted grammar Ĝ *
sto, we immediately obtain the following admissible specification of the

corresponding combinatorial classes9:

E1 = S × C, E2 = A× C,
E3 = S × α|||, E4 = A× α|||,

9Note that this specification has already been simplified by removing classes that are only duplicates of others.

31

S1 = E × A, S2 = C × A, S3 = α||| ×A,
S4 = S ×A, S5 = A×A,
C1 = C × α|||, C2 = α||| × α|||,
A1 = α(((×A× α))), A2 = α(((×M× α))), A3 = α(((× P × α))),
A4 = α(((×Q× α))), A5 = α(((×R× α))), A6 = α(((×F × α))),
A7 = α(((× G × α))),
G1 = A× α|||, G2 = A×D,
G3 = α||| ×A, G4 = D ×A,
D1 = B × α|||, D2 = α||| × α|||,
B1 = B × α|||, B2 = α||| × α|||,
F1 = α||| × α||| × α|||, F2 = α||| × α||| × α||| × α|||, F3 = α||| × α||| × α||| × α||| ×H,
F4 = α||| × α||| × α||| × α||| × α|||,
H1 = H× α|||, H2 = α||| × α|||,
P1 = α||| ×A× α|||, P2 = α||| ×A× α||| × α|||, P3 = α||| × α||| ×A× α|||,
P4 = α||| × α||| ×A× α||| × α|||,
Q1 = α||| × α||| ×O × α||| × α|||, Q2 = α||| × α||| × V × α|||,
R1 = α||| ×O × α||| × α|||, R2 = α||| × α||| ×W × α|||,
V1 = J ×O, V2 = α||| ×O,
W1 = J ×A, W2 = α||| ×A,
O1 = A×K, O2 = A× α|||,
J1 = J × α|||, J2 = α||| × α|||,
K1 = K × α|||, K2 = α||| × α|||,
M1 = X × Z, M2 = X × X , M3 = X ×A,
M4 = A×Z, M5 = A×X , M6 = A×A,
X1 = U ×A, X2 = α||| ×A,
Z1 = X × Z, Z2 = X × U , Z3 = X × α|||,
Z4 = X × X , Z5 = X ×A,
Z6 = A×Z, Z7 = A× U , Z8 = A× α|||,
Z9 = A×X , Z10 = A×A,
U1 = U × α|||, U2 = α||| × α|||,

S ′ = µ1 · E + µ2 · S + µ3 · A,
E = µ4 · E1 + µ5 · E2 + µ6 · E3 + µ7 · E4,
S = µ8 · S1 + µ9 · S2 + µ10 · S3 + µ11 · S4 + µ12 · S5,
C = µ13 · C1 + µ14 · C2,
A = µ15 · A1 + µ16 · A2 + µ17 · A3 + µ18 · A4 + µ19 · A5 + µ20 · A6 + µ21 · A7,
G = µ22 · G1 + µ23 · G2 + µ24 · G3 + µ25 · G4,
D = µ26 · D1 + µ27 · D2,
B = µ28 · B1 + µ29 · B2,
F = µ30 · F1 + µ31 · F2 + µ32 · F3 + µ33 · F4,
H = µ34 · H1 + µ35 · H2,
P = µ36 · P1 + µ37 · P2 + µ38 · P3 + µ39 · P4,
Q = µ40 · Q1 + µ41 · Q2,
R = µ42 · R1 + µ43 · R2,
V = µ44 · V1 + µ45 · V2,
W = µ46 · W1 + µ47 · W2,
O = µ48 · O1 + µ49 · O2,
J = µ50 · J1 + µ51 · J2,
K = µ52 · K1 + µ53 · K2,
M = µ54 · M1 + µ55 · M2 + µ56 · M3 + µ57 · M4 + µ58 · M5 + µ59 · M6,
X = µ60 · X1 + µ61 · X2,
Z = µ62 · Z1 + µ63 · Z2 + µ64 · Z3 + µ65 · Z4 + µ66 · Z5 + µ67 · Z6 + µ68 · Z7 + µ69 · Z8 + µ70 · Z9 + µ71 · Z10,
U = µ72 · U1 + µ73 · U2.

Now, this (simplified) specification can easily be transformed into the following recursive form for the
function size:

32

size(I, n) :=

µ1 · size(E , n) + µ2 · size(S, n) + µ3 · size(A, n) I = S ′,
sizeE(I, n) I ∈ {Ei | 1 ≤ i ≤ 4} or I = E ,
sizeS(I, n) I ∈ {Si | 1 ≤ i ≤ 5} or I = S,
sizeC(I, n) I ∈ {Ci | 1 ≤ i ≤ 2} or I = C,
sizeA(I, n) I ∈ {Ai | 1 ≤ i ≤ 7} or I = A,
sizeG(I, n) I ∈ {Gi | 1 ≤ i ≤ 4} or I = G,
sizeD(I, n) I ∈ {Di | 1 ≤ i ≤ 2} or I = D,
sizeB(I, n) I ∈ {Bi | 1 ≤ i ≤ 2} or I = B,
sizeF (I, n) I ∈ {Fi | 1 ≤ i ≤ 4} or I = F ,
sizeH(I, n) I ∈ {Hi | 1 ≤ i ≤ 2} or I = H,
sizeP (I, n) I ∈ {Pi | 1 ≤ i ≤ 4} or I = P,
sizeQ(I, n) I ∈ {Qi | 1 ≤ i ≤ 2} or I = Q,
sizeR(I, n) I ∈ {Ri | 1 ≤ i ≤ 2} or I = R,
sizeV (I, n) I ∈ {Vi | 1 ≤ i ≤ 2} or I = V,
sizeW (I, n) I ∈ {Wi | 1 ≤ i ≤ 2} or I =W,

sizeO(I, n) I ∈ {Oi | 1 ≤ i ≤ 2} or I = O,
sizeJ(I, n) I ∈ {Ji | 1 ≤ i ≤ 2} or I = J ,
sizeK(I, n) I ∈ {Ki | 1 ≤ i ≤ 2} or I = K,
sizeM (I, n) I ∈ {Mi | 1 ≤ i ≤ 6} or I =M,

sizeX(I, n) I ∈ {Xi | 1 ≤ i ≤ 2} or I = X ,
sizeZ(I, n) I ∈ {Zi | 1 ≤ i ≤ 10} or I = Z,
sizeU (I, n) I ∈ {Ui | 1 ≤ i ≤ 2} or I = U ,
0 else,

where

sizeE(I, n) :=

∑n−1
j=1 size(S, j) · size(C, n− j) I = E1,∑n−1
j=1 size(A, j) · size(C, n− j) I = E2,

size(S, n− 1) I = E3,
size(A, n− 1) I = E4,
µ4 · size(E1, n) + µ5 · size(E2, n) + µ6 · size(E3, n) + µ7 · size(E4, n) I = E ,
0 else,

sizeS(I, n) :=

∑n−1
j=1 size(E , j) · size(A, n− j) I = S1,∑n−1
j=1 size(C, j) · size(A, n− j) I = S2,

size(A, n− 1) I = S3,∑n−1
j=1 size(S, j) · size(A, n− j) I = S4,∑n−1
j=1 size(A, j) · size(A, n− j) I = S5,

µ8 · size(S1, n) + µ9 · size(S2, n) + µ10 · size(S3, n)

+µ11 · size(S4, n) + µ12 · size(S5, n) I = S,
0 else,

sizeC(I, n) :=

size(C, n− 1) I = C1,
1 I = C2 and n = 2,

µ13 · size(C1, n) + µ14 · size(C2, n) I = C,
0 else,

33

sizeA(I, n) :=

size(A, n− 2) I = A1,

size(M, n− 2) I = A2,

size(P, n− 2) I = A3,

size(Q, n− 2) I = A4,

size(R, n− 2) I = A5,

size(F , n− 2) I = A6,

size(G, n− 2) I = A7,

µ15 · size(A1, n) + µ16 · size(A2, n) + µ17 · size(A3, n) + µ18 · size(A4, n)

+µ19 · size(A5, n) + µ20 · size(A6, n) + µ21 · size(A7, n) I = A,
0 else,

sizeG(I, n) :=

size(A, n− 1) I = G1,∑n−1
j=1 size(A, j) · size(D, n− j) I = G2,

size(A, n− 1) I = G3,∑n−1
j=1 size(D, j) · size(A, n− j) I = G4,

µ22 · size(G1, n) + µ23 · size(G2, n) + µ24 · size(G3, n) + µ25 · size(G4, n) I = G,
0 else,

sizeD(I, n) :=

size(B, n− 1) I = D1,

1 I = D2 and n = 2,

µ26 · size(D1, n) + µ27 · size(D2, n) I = D,
0 else,

sizeB(I, n) :=

size(B, n− 1) I = B1,
1 I = B2 and n = 2,

µ28 · size(B1, n) + µ29 · size(B2, n) I = B,
0 else,

sizeF (I, n) :=

1 I = F1 and n = 3,

1 I = F2 and n = 4,

size(H, n− 4) I = F3,

1 I = F4 and n = 5,

µ30 · size(F1, n) + µ31 · size(F2, n)

+µ32 · size(F3, n) + µ33 · size(F4, n) I = F ,
0 else,

sizeH(I, n) :=

size(H, n− 1) I = H1,

1 I = H2 and n = 2,

µ34 · size(H1, n) + µ35 · size(H2, n) I = H,
0 else,

sizeP (I, n) :=

size(A, n− 2) I = P1,

size(A, n− 3) I = P2,

size(A, n− 3) I = P3,

size(A, n− 4) I = P4,

µ36 · size(P1, n) + µ37 · size(P2, n) + µ38 · size(P3, n) + µ39 · size(P4, n) I = P,
0 else,

34

sizeQ(I, n) :=

size(O, n− 4) I = Q1,

size(V, n− 3) I = Q2,

µ40 · size(Q1, n) + µ41 · size(Q2, n) I = Q,
0 else,

sizeR(I, n) :=

size(O, n− 3) I = R1,

size(W, n− 3) I = R2,

µ42 · size(R1, n) + µ43 · size(R2, n) I = R,
0 else,

sizeV (I, n) :=

∑n−1
j=1 size(J , j) · size(O, n− j) I = V1,

size(O, n− 1) I = V2,
µ44 · size(V1, n) + µ45 · size(V2, n) I = V,
0 else,

sizeW (I, n) :=

∑n−1
j=1 size(J , j) · size(A, n− j) I =W1,

size(A, n− 1) I =W2,

µ46 · size(W1, n) + µ47 · size(W2, n) I =W,

0 else,

sizeO(I, n) :=

∑n−1
j=1 size(A, j) · size(K, n− j) I = O1,

size(A, n− 1) I = O2,

µ48 · size(O1, n) + µ49 · size(O2, n) I = O,
0 else,

sizeJ(I, n) :=

size(J , n− 1) I = J1,
1 I = J2 and n = 2,

µ50 · size(J1, n) + µ51 · size(J2, n) I = J ,
0 else,

sizeK(I, n) :=

size(K, n− 1) I = K1,

1 I = K2 and n = 2,

µ52 · size(K1, n) + µ53 · size(K2, n) I = K,
0 else,

sizeM (I, n) :=

∑n−1
j=1 size(X , j) · size(Z, n− j) I =M1,∑n−1
j=1 size(X , j) · size(X , n− j) I =M2,∑n−1
j=1 size(X , j) · size(A, n− j) I =M3,∑n−1
j=1 size(A, j) · size(Z, n− j) I =M4,∑n−1
j=1 size(A, j) · size(X , n− j) I =M5,∑n−1
j=1 size(A, j) · size(A, n− j) I =M6,

µ54 · size(M1, n) + µ55 · size(M2, n) + µ56 · size(M3, n)

+µ57 · size(M4, n) + µ58 · size(M5, n) + µ59 · size(M6, n) I =M,

0 else,

sizeX(I, n) :=

∑n−1
j=1 size(U , j) · size(A, n− j) I = X1,

size(A, n− 1) I = X2,

µ60 · size(X1, n) + µ61 · size(X2, n) I = X ,
0 else,

35

sizeZ(I, n) :=

∑n−1
j=1 size(X , j) · size(Z, n− j) I = Z1,∑n−1
j=1 size(X , j) · size(U , n− j) I = Z2,

size(X , n− 1) I = Z3,∑n−1
j=1 size(X , j) · size(X , n− j) I = Z4,∑n−1
j=1 size(X , j) · size(A, n− j) I = Z5,∑n−1
j=1 size(A, j) · size(Z, n− j) I = Z6,∑n−1
j=1 size(A, j) · size(U , n− j) I = Z7,

size(A, n− 1) I = Z8,∑n−1
j=1 size(A, j) · size(X , n− j) I = Z9,∑n−1
j=1 size(A, j) · size(A, n− j) I = Z10,

µ62 · size(Z1, n) + µ63 · size(Z2, n) + µ64 · size(Z3, n) + µ65 · size(Z4, n)

+µ66 · size(Z5, n) + µ67 · size(Z6, n) + µ68 · size(Z7, n) + µ69 · size(Z8, n)

+µ70 · size(Z9, n) + µ71 · size(Z10, n) I = Z,
0 else,

sizeU (I, n) :=

size(U , n− 1) I = U1,
1 I = U2 and n = 2,

µ72 · size(U1, n) + µ73 · size(U2, n) I = U ,
0 else.

From those recurrences, the desired algorithm can easily be constructed. As the complete presentation
of this algorithm would be too comprehensive, we decided to omit it and instead refer to Algorithms 1 to
4 and 6 given in [WN10b], since for the construction of our unranking algorithm, we had to use exactly
these Algorithms as subroutines.

36

Sm-II Tables

Nonterminal Nt Probabilities of Rules with Premise Nt

S’ p̂1 := 1,

E p̂2 := 137
6476 , p̂3 := 6339

6476 ,

S p̂4 := 177
12952 , p̂5 := 12775

12952 ,

T p̂6 := 11086
12775 , p̂7 := 1689

12775 ,

C p̂8 := 14367
148978 , p̂9 := 134611

148978 ,

A p̂10 := 1,

L p̂11 := 605069
792975 , p̂12 := 31912

792975 , p̂13 := 4912
264325 , p̂14 := 5821

158595 ,

p̂15 := 1893
264325 , p̂16 := 2723

31719 , p̂17 := 38399
792975 ,

G p̂18 := 11667
38399 , p̂19 := 7235

38399 , p̂20 := 11831
38399 , p̂21 := 7666

38399 ,

D p̂22 := 1,

B p̂23 := 4967
12748 , p̂24 := 7781

12748 ,

F p̂25 := 3912
68075 , p̂26 := 23208

68075 , p̂27 := 8191
13615 ,

H p̂28 := 8191
40700 , p̂29 := 32509

40700 ,

P p̂30 := 533
4912 , p̂31 := 1053

4912 , p̂32 := 2963
14736 , p̂33 := 7015

14736 ,

Q p̂34 := 4986
29105 , p̂35 := 24119

29105 ,

R p̂36 := 2357
5679 , p̂37 := 3322

5679 ,

V p̂38 := 1,

W p̂39 := 1,

O p̂40 := 1,

J p̂41 := 27441
84620 , p̂42 := 57179

84620 ,

K p̂43 := 15731
53725 , p̂44 := 37994

53725 ,

M p̂45 := 1,

X p̂46 := 6196
87035 , p̂47 := 80839

87035 ,

Y p̂48 := 1,

Z p̂49 := 2812
55123 , p̂50 := 52311

55123 ,

N p̂51 := 7737
17437 , p̂52 := 9700

17437 ,

U p̂53 := 109939
518817 , p̂54 := 408878

518817 .

Table 1: The probabilities (relative frequencies) for the production rules of the SCFG Ĝsto, obtained by
training it using our biological database.

37

Nonterminal Nt Probabilities of Rules with Premise Nt

S’ p̂1 := 1.000,
E p̂2 := 0.021, p̂3 := 0.979,
S p̂4 := 0.014, p̂5 := 0.986,
T p̂6 := 0.868, p̂7 := 0.132,
C p̂8 := 0.096, p̂9 := 0.904,
A p̂10 := 1.000
L p̂11 := 0.763, p̂12 := 0.040, p̂13 := 0.019, p̂14 := 0.037,

p̂15 := 0.007, p̂16 := 0.086, p̂17 := 0.048,
G p̂18 := 0.304, p̂19 := 0.188, p̂20 := 0.308, p̂21 := 0.200,
D p̂22 := 1.000
B p̂23 := 0.390, p̂24 := 0.610,
F p̂25 := 0.057, p̂26 := 0.341, p̂27 := 0.602,
H p̂28 := 0.201, p̂29 := 0.799,
P p̂30 := 0.109, p̂31 := 0.214, p̂32 := 0.201, p̂33 := 0.476,
Q p̂34 := 0.171, p̂35 := 0.829,
R p̂36 := 0.415, p̂37 := 0.585,
V p̂38 := 1.000
W p̂39 := 1.000
O p̂40 := 1.000
J p̂41 := 0.324, p̂42 := 0.676,
K p̂43 := 0.293, p̂44 := 0.707,
M p̂45 := 1.0000
X p̂46 := 0.071, p̂47 := 0.929,
Y p̂48 := 1.0000
Z p̂49 := 0.051, p̂50 := 0.949,
N p̂51 := 0.444, p̂52 := 0.556,
U p̂53 := 0.212, p̂54 := 0.788.

Table 2: Floating point approximations of the probabilities (relative frequencies) for the production rules

of the SCFG Ĝsto (rounded to three decimal places).

38

Nonterminal Nt Weights of Rules with Premise Nt

S’ λ1 := 1.0000, λ2 := 0.0212, λ3 := 0.0003,
E λ4 := 0.9788, λ5 := 0.0134, λ6 := 0.0944, λ7 := 0.0013,
S λ8 := 0.8559, λ9 := 0.1304, λ10 := 0.0126, λ11 := 0.0181,

λ12 := 0.0002,
C λ13 := 0.9036, λ14 := 0.0871,
A λ15 := 0.7630, λ16 := 0.0402, λ17 := 0.0186, λ18 := 0.0367,

λ19 := 0.0072, λ20 := 0.0858, λ21 := 0.0484,
G λ22 := 0.3038, λ23 := 0.1884, λ24 := 0.3081, λ25 := 0.1996,
D λ26 := 1.0000, λ27 := 0.3896,
B λ28 := 0.6104, λ29 := 0.2378,
F λ30 := 0.0575, λ31 := 0.3409, λ32 := 0.6016, λ33 := 0.1211,
H λ34 := 0.7987, λ35 := 0.1608,
P λ36 := 0.1085, λ37 := 0.2144, λ38 := 0.2011, λ39 := 0.4760,
Q λ40 := 0.1713, λ41 := 0.8287,
R λ42 := 0.4150, λ43 := 0.5850,
V λ44 := 1.0000, λ45 := 0.3243,
W λ46 := 1.0000, λ47 := 0.3243,
O λ48 := 1.0000, λ49 := 0.2928,
J λ50 := 0.6757, λ51 := 0.2191,
K λ52 := 0.7072, λ53 := 0.2071,
M λ54 := 1.0000, λ55 := 0.0510, λ56 := 0.0036, λ57 := 0.0712,

λ58 := 0.0036, λ59 := 0.0003,
X λ60 := 0.9288, λ61 := 0.1968,
Z λ62 := 0.4211, λ63 := 0.5279, λ64 := 0.1119, λ65 := 0.0215,

λ66 := 0.0015, λ67 := 0.0300, λ68 := 0.0376, λ69 := 0.0080,
λ70 := 0.0015, λ71 := 0.0001,

U λ72 := 0.7881, λ73 := 0.1670.

Table 3: Floating point approximations of the probabilities (weights) λi, 1 ≤ i ≤ 73, for the production

rules of the grammar Ĝ *
sto (rounded to four decimal places). Note that for i ∈ {74, . . . , 105}, λi := 1

holds.

39

Nonterminal Nt Integer weights of Rules with Premise Nt

S’ µ1 := 10000, µ2 := 212,
µ3 := 3,

E µ4 := 9788, µ5 := 134,
µ6 := 944, µ7 := 13,

S µ8 := 8559, µ9 := 1304,
µ10 := 126, µ11 := 181,
µ12 := 2,

C µ13 := 9036, µ14 := 871,
A µ15 := 76300000, µ16 := 4020000,

µ17 := 1860000, µ18 := 3670000,
µ19 := 720000, µ20 := 8580000,
µ21 := 4840000,

G µ22 := 3038, µ23 := 1884,
µ24 := 3081, µ25 := 1996,

D µ26 := 10000, µ27 := 3896,
B µ28 := 6104, µ29 := 2378,
F µ30 := 5750000, µ31 := 340900000000,

µ32 := 6016000000000000, µ33 := 1211000000000000,
H µ34 := 7987, µ35 := 1608,
P µ36 := 10850000, µ37 := 214400000000,

µ38 := 201100000000, µ39 := 4760000000000000,
Q µ40 := 1713000000000000, µ41 := 828700000000,
R µ42 := 415000000000, µ43 := 585000000000,
V µ44 := 10000, µ45 := 3243,
W µ46 := 10000, µ47 := 3243,
O µ48 := 10000, µ49 := 2928,
J µ50 := 6757, µ51 := 2191,
K µ52 := 7072, µ53 := 2071,
M µ54 := 10000, µ55 := 510,

µ56 := 36, µ57 := 712,
µ58 := 36, µ59 := 3,

X µ60 := 9288, µ61 := 1968,
Z µ62 := 4211, µ63 := 5279,

µ64 := 1119, µ65 := 215,
µ66 := 15, µ67 := 300,
µ68 := 376, µ69 := 80,
µ70 := 15, µ71 := 1,

U µ72 := 7881, µ73 := 1670.

Table 4: Integer weights µi, 1 ≤ i ≤ 73, for the production rules of the grammar Ĝ *
sto. Note that for

i ∈ {74, . . . , 105}, µi := 1 holds.

40

	1 Introduction
	2 Prior Results and Basic Definitions
	2.1 Uniform Random Generation
	2.2 (Admissible) Constructions and Specifications
	2.3 Non-Uniform Random Generation
	2.4 Stochastic Context-Free Grammars
	2.4.1 Basic Concepts
	2.4.2 Modeling RNA Secondary Structure via SCFGs
	2.4.3 Random Generation With SCFGs

	2.5 Unranking of Combinatorial Objects

	3 Generating Random RNA Secondary Structures
	3.1 Considered Combinatorial Class
	3.2 Considered SCFG Model
	3.3 Derivation of the Algorithm

	4 Discussion
	4.1 Parameters for Structural Motifs
	4.2 Related Free Energies
	4.2.1 Unquantified Results
	4.2.2 Quantified Results

	4.3 Conclusion

	Acknowledgments
	A How to Construct a Weighted Unranking Algorithm from a Given SCFG
	Sm-I Derivation of the Algorithm
	Sm-I.1 Considered (unambiguous, -free and loop-free) SCFG
	Sm-I.2 Transforming our SCFG into RNF
	Sm-I.3 Reweighting the Production Rules
	Sm-I.4 Transforming Reweighted Grammar into Admissible Specification

	Sm-II Tables

